Algebra - B.L. van der Waerden

Algebra

Volume II
Buch | Softcover
284 Seiten
2003 | 1st ed. 1991. 1st softcover printing 2003
Springer-Verlag New York Inc.
978-0-387-40625-1 (ISBN)
64,19 inkl. MwSt
Based in part on lectures by E. Artin and E. Noether
...This beautiful and eloquent text served to transform the graduate teaching of algebra, not only in Germany, but elsewhere in Europe and the United States. It formulated clearly and succinctly the conceptual and structural insights which Noether had expressed so forcefully. This was combined with the elegance and understanding with which Artin had lectured...Its simple but austere style set the pattern for mathematical texts in other subjects, from Banach spaces to topological group theory...It is, in my view, the most influential text in algebra of the twentieth century.


- Saunders MacLane, Notices of the AMS


How exciting it must have been to hear Emil Artin and Emmy Noether lecture on algebra in the 1920's, when the axiomatic approach to the subject was amazing and new! Van der Waerden was there, and produced from his notes the classic textbook of the field. To Artin's clarity and Noether's originality he added his extraordinary gift for synthesis. At one time every would-be algebraist had to study this text. Even today, all who work in Algebra owe a tremendous debt to it; they learned from it by second or third hand, if not directly. It is still a first-rate (some would say, the best) source for the great range of material it contains.





- David Eisenbud, Mathematical Sciences Research Institute


Van der Waerden's book Moderne Algebra, first published in 1930, set the standard for the unified approach to algebraic structures in the twentieth century. It is a classic, still worth reading today.


- Robin Hartshorne, University of California, Berkeley

12 Linear Algebra.- 12.1 Modules over a Ring.- 12.2 Modules over Euclidean Rings. Elementary Divisors.- 12.3 The Fundamental Theorem of Abelian Groups.- 12.4 Representations and Representation Modules.- 12.5 Normal Forms of a Matrix in a Commutative Field.- 12.6 Elementary Divisors and Characteristic Functions.- 12.7 Quadratic and Hermitian Forms.- 12.8 Antisymmetric Bilinear Forms.- 13 Algebras.- 13.1 Direct Sums and Intersections.- 13.2 Examples of Algebras.- 13.3 Products and Crossed Products.- 13.4 Algebras as Groups with Operators. Modules and Representations.- 13.5 The Large and Small Radicals.- 13.6 The Star Product.- 13.7 Rings with Minimal Condition.- 13.8 Two-Sided Decompositions and Center Decomposition.- 13.9 Simple and Primitive Rings.- 13.10 The Endomorphism Ring of a Direct Sum.- 13.11 Structure Theorems for Semisimple and Simple Rings.- 13.12 The Behavior of Algebras under Extension of the Base Field.- 14 Representation Theory of Groups and Algebras.- 14.1 Statement of the Problem.- 14.2 Representation of Algebras.- 14.3 Representations of the Center.- 14.4 Traces and Characters.- 14.5 Representations of Finite Groups.- 14.6 Group Characters.- 14.7 The Representations of the Symmetric Groups.- 14.8 Semigroups of Linear Transformations.- 14.9 Double Modules and Products of Algebras.- 14.10 The Splitting Fields of a Simple Algebra.- 14.11 The Brauer Group. Factor Systems.- 15 General Ideal Theory of Commutative Rings.- 15.1 Noetherian Rings.- 15.2 Products and Quotients of Ideals.- 15.3 Prime Ideals and Primary Ideals.- 15.4 The General Decomposition Theorem.- 15.5 The First Uniqueness Theorem.- 15.6 Isolated Components and Symbolic Powers.- 15.7 Theory of Relatively Prime Ideals.- 15.8 Single-Primed Ideals.- 15.9 Quotient Rings.- 15.10 The Intersection ofall Powers of an Ideal.- 15.11 The Length of a Primary Ideal. Chains of Primary Ideals in Noetherian Rings.- 16 Theory of Polynomial Ideals.- 16.1 Algebraic Manifolds.- 16.2 The Universal Field.- 16.3 The Zeros of a Prime Ideal.- 16.4 The Dimension.- 16.5 Hilbert’s Nullstellensatz. Resultant Systems for Homogeneous Equations.- 16.6 Primary Ideals.- 16.7 Noether’s Theorem.- 16.8 Reduction of Multidimensional Ideals to Zero-Dimensional Ideals.- 17 Integral Algebraic Elements.- 17.1 Finite R-Modules.- 17.2 Integral Elements over a Ring.- 17.3 The Integral Elements of a Field.- 17.4 Axiomatic Foundation of Classical Ideal Theory.- 17.5 Converse and Extension of Results.- 17.6 Fractional Ideals.- 17.7 Ideal Theory of Arbitrary Integrally Closed Integral Domains.- 18 Fields with Valuations.- 18.1 Valuations.- 18.2 Complete Extensions.- 18.3 Valuations of the Field of Rational Numbers.- 18.4 Valuation of Algebraic Extension Fields: Complete Case.- 18.5 Valuation of Algebraic Extension Fields: General Case.- 18.6 Valuations of Algebraic Number Fields.- 18.7 Valuations of a Field ?(x) of Rational Functions.- 18.8 The Approximation Theorem.- 19 Algebraic Functions of One Variable.- 19.1 Series Expansions in the Uniformizing Variable.- 19.2 Divisors and Multiples.- 19.3 The Genus g.- 19.4 Vectors and Covectors.- 19.5 Differentials. The Theorem on the Speciality Index.- 19.6 The Riemann-Roch Theorem.- 19.7 Separable Generation of Function Fields.- 19.8 Differentials and Integrals in the Classical Case.- 19.9 Proof of the Residue Theorem.- 20 Topological Algebra.- 20.1 The Concept of a Topological Space.- 20.2 Neighborhood Bases.- 20.3 Continuity. Limits.- 20.4 Separation and Countability Axioms.- 20.5 Topological Groups.- 20.6 Neighborhoods of the Identity.- 20.7 Subgroupsand Factor Groups.- 20.8 T-Rings and Skew T-Fields.- 20.9 Group Completion by Means of Fundamental Sequences.- 20.10 Filters.- 20.11 Group Completion by Means of Cauchy Filters.- 20.12 Topological Vector Spaces.- 20.13 Ring Completion.- 20.14 Completion of Skew Fields.

Übersetzer J.R. Schulenberger
Zusatzinfo 1 Illustrations, black and white; XII, 284 p. 1 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-40625-5 / 0387406255
ISBN-13 978-0-387-40625-1 / 9780387406251
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich