Deep Learning with Python - Nikhil Ketkar, Jojo Moolayil

Deep Learning with Python (eBook)

Learn Best Practices of Deep Learning Models with PyTorch
eBook Download: PDF
2021 | 2nd ed.
XVII, 306 Seiten
Apress (Verlag)
978-1-4842-5364-9 (ISBN)
Systemvoraussetzungen
36,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook's Artificial Intelligence Research Group.

You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. 

You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch.

What You'll Learn
  • Review machine learning fundamentals such as overfitting, underfitting, and regularization.
  • Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent.
  • Apply in-depth linear algebra with PyTorch
  • Explore PyTorch fundamentals and its building blocks
  • Work with tuning and optimizing models 
Who This Book Is For

Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.     




Nikhil S. Ketkar currently leads the Machine Learning Platform team at Flipkart, India's largest e-commerce company. He received his Ph.D. from Washington State University. Following that he conducted postdoctoral research at University of North Carolina at Charlotte, which was followed by a brief stint in high frequency trading at Transmaket in Chicago. More recently he led the data mining team in Guavus, a startup doing big data analytics in the telecom domain and Indix, a startup doing data science in the e-commerce domain. His research interests include machine learning and graph theory.

Jojo Moolayil is an artificial intelligence, deep learning, machine learning, and decision science professional with over five years of industrial experience and is a published author of the book Smarter Decisions - The Intersection of IoT and Decision Science. He has worked with several industry leaders on high-impact and critical data science and machine learning projects across multiple verticals. He is currently associated with Amazon Web Services as a research scientist. He was born and raised in Pune, India and graduated from the University of Pune with a major in Information Technology Engineering. He started his career with Mu Sigma Inc., the world's largest pure-play analytics provider and worked with the leaders of many Fortune 50 clients. He later worked with Flutura - an IoT analytics startup and GE. He currently resides in Vancouver, BC. Apart from writing books on decision science and IoT, Jojo has also been a technical reviewer for various books on machine learning, deep learning and business analytics with Apress and Packt publications. He is an active data science tutor and maintains a blog at http://blog.jojomoolayil.com.        



Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This updated edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook's Artificial Intelligence Research Group.You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms. You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch.What You'll LearnReview machine learning fundamentals such as overfitting, underfitting, and regularization.Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent.Apply in-depth linear algebra with PyTorchExplore PyTorch fundamentals andits building blocksWork with tuning and optimizing models Who This Book Is ForBeginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.     
Erscheint lt. Verlag 9.4.2021
Zusatzinfo XVII, 306 p. 82 illus.
Sprache englisch
Themenwelt Informatik Programmiersprachen / -werkzeuge Python
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Advanced PyTorch • Deep learning • Deep Networks • machine learning • Python • PyTorch
ISBN-10 1-4842-5364-7 / 1484253647
ISBN-13 978-1-4842-5364-9 / 9781484253649
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
34,99
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99