Nature-Inspired Optimization Algorithms (eBook)

Recent Advances in Natural Computing and Biomedical Applications
eBook Download: PDF
2021 | 1. Auflage
168 Seiten
Walter de Gruyter GmbH & Co.KG (Verlag)
978-3-11-067611-2 (ISBN)

Lese- und Medienproben

Nature-Inspired Optimization Algorithms -
Systemvoraussetzungen
139,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems.

Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications.

Tentative Table of Contents/Topic Coverage:?

- Neural Computation

- Evolutionary Computing Methods

- Neuroscience driven AI Inspired Algorithms

- Biological System based algorithms

- Hybrid and Intelligent Computing Algorithms

- Application of Natural Computing

- Review and State of art analysis of Optimization algorithms

- Molecular and Quantum computing applications

- Swarm Intelligence

- Population based algorithm and other optimizations



A. Khamparia, Lovely Professional Univ.; A. Khanna, M. Agrasen Inst. of Techn., India; N. Nhu, B. Nguyen, Duy Tan University, Vietnam.

PDFPDF (Wasserzeichen)
Größe: 1,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99