Sparse Estimation with Math and R - Joe Suzuki

Sparse Estimation with Math and R

100 Exercises for Building Logic

(Autor)

Buch | Softcover
234 Seiten
2021 | 1st ed. 2021
Springer Verlag, Singapore
978-981-16-1445-3 (ISBN)
37,45 inkl. MwSt
The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs.  Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfectmaterial for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis.



This book is one of a series of textbooks in machine learning by the same author. Other titles are: 

- Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679)



- Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762)



- Sparse Estimation with Math and Python

Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory. He is the author of a series of textbooks on machine learning- Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679)- Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762)- Sparse Estimation with Math and R (This book)- Sparse Estimation with Math and Python

Chapter 1: Linear Regression.- Chapter 2: Generalized Linear Regression.- Chapter 3: Group Lasso.- Chapter 4: Fused Lasso.- Chapter 5: Graphical Model.- Chapter 6: Matrix Decomposition.- Chapter 7: Multivariate Analysis.

Erscheinungsdatum
Zusatzinfo 46 Illustrations, color; 8 Illustrations, black and white; X, 234 p. 54 illus., 46 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Logik / Mengenlehre
Schlagworte fused lasso • generalized linear lasso • Graphical Models • group lasso • linear regression • machine learning • Matrix decomposition • multivariate analysis • Sparse Estimation
ISBN-10 981-16-1445-8 / 9811614458
ISBN-13 978-981-16-1445-3 / 9789811614453
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99