Riemannian Optimization and Its Applications (eBook)

(Autor)

eBook Download: PDF
2021 | 1st ed. 2021
IX, 129 Seiten
Springer International Publishing (Verlag)
978-3-030-62391-3 (ISBN)

Lese- und Medienproben

Riemannian Optimization and Its Applications - Hiroyuki Sato
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This brief describes the basics of Riemannian optimization-optimization on Riemannian manifolds-introduces algorithms for Riemannian optimization problems, discusses the theoretical properties of these algorithms, and suggests possible applications of Riemannian optimization to problems in other fields.

To provide the reader with a smooth introduction to Riemannian optimization, brief reviews of mathematical optimization in Euclidean spaces and Riemannian geometry are included. Riemannian optimization is then introduced by merging these concepts. In particular, the Euclidean and Riemannian conjugate gradient methods are discussed in detail. A brief review of recent developments in Riemannian optimization is also provided.
 
Riemannian optimization methods are applicable to many problems in various fields. This brief discusses some important applications including the eigenvalue and singular value decompositions in numerical linear algebra, optimal model reduction in control engineering, and canonical correlation analysis in statistics.



Doctor Hiroyuki Sato received his bachelor of engineering degree from the Faculty of Engineering, Kyoto University, Japan, in 2009 and his master and doctor of informatics degrees from the Graduate School of Informatics, Kyoto University, in 2011 and 2013, respectively. Following graduation, from 2013 to 2014, he was a research fellow of the Japan Society for the Promotion of Science. Subsequently, from 2014 to 2017, he worked as an assistant professor in the Faculty of Engineering, Tokyo University of Science, Japan. Further, from 2017 to 2018, Doctor Sato was employed as an assistant professor in the Hakubi Center for Advanced Research, Kyoto University. Currently, he is an associate professor in the Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University.

Doctor Sato has been studying Riemannian optimization, that is, geometric optimization on Riemannian manifolds. His research interests include the theory of Riemannian optimization algorithms, such as the Riemannian conjugate gradient methods, and their applications to problems in other fields. His works contribute to developing the Riemannian optimization theory and proposing Riemannian optimization algorithms for problems arising in applications. Because Riemannian optimization is an interdisciplinary research field with diverse applications, Doctor Sato routinely collaborates with researchers across various fields, including numerical linear algebra, control engineering, and statistics.

Erscheint lt. Verlag 17.2.2021
Reihe/Serie SpringerBriefs in Control, Automation and Robotics
SpringerBriefs in Control, Automation and Robotics
SpringerBriefs in Control, Automation and Robotics
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Electrical and Computer Engineering
Zusatzinfo IX, 129 p. 15 illus., 12 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik Elektrotechnik / Energietechnik
Schlagworte Canonical correlation analysis • conjugate-gradient method • Conjugate Gradient Method • H2-Optimal Model Reduction • matrix theory • numerical linear algebra • Optimal Model Reduction • optimization on manifolds • Riemannian Optimization • singular value decomposition
ISBN-10 3-030-62391-2 / 3030623912
ISBN-13 978-3-030-62391-3 / 9783030623913
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99