Impact and Opportunities of Artificial Intelligence Techniques in the Steel Industry
Springer International Publishing (Verlag)
978-3-030-69366-4 (ISBN)
Challenges and frontiers in implementing artificial intelligence in process industry .- Data Pre-processing for effective design of Machine Learning-based models in the steel sector .- Quantifying uncertainty in physics-informed variational autoencoders for anomaly detection.- Mapping of Standardized State Machines to Utilize Machine Learning Models in Process Control Environments.- Quality4.0 - Transparent product quality supervision in the age of Industry 4.0.- Artificial Intelligence and Machine Learning techniques for generation and assessment of products properties data.- The use of advanced data analytics to monitor process-induced changes to the microstructure and mechanical properties in flat steel strip.- Unsupervised Deep Learning for Detection of Non-uniform Surface Defect Distributions in Flat Steel Production.- Machine Learning-based models for supporting optimal exploitation of process off-gases in integrated steelworks.- Industrial Cyber Security at the Network Edge: theBRAINE Project approach.- Smart Steel Pipe Production Plant via Cognitive Digital Twins: A Case Study on Digitalization of Spiral Welded Pipe Machinery.- TSorage: A Modern and Resilient Platform for Time Series Management at Scale.
Erscheinungsdatum | 06.02.2021 |
---|---|
Reihe/Serie | Advances in Intelligent Systems and Computing |
Zusatzinfo | XIV, 152 p. 67 illus., 59 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 266 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Maschinenbau | |
Schlagworte | Artificial Intelligence • Big Data • Cyber-security • Digitalization • ESTEP • Industry • Iron and Steel • steel |
ISBN-10 | 3-030-69366-X / 303069366X |
ISBN-13 | 978-3-030-69366-4 / 9783030693664 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich