Heterogeneity in Statistical Genetics (eBook)

How to Assess, Address, and Account for Mixtures in Association Studies
eBook Download: PDF
2020 | 1st ed. 2020
XX, 352 Seiten
Springer International Publishing (Verlag)
978-3-030-61121-7 (ISBN)

Lese- und Medienproben

Heterogeneity in Statistical Genetics - Derek Gordon, Stephen J. Finch, Wonkuk Kim
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Heterogeneity, or mixtures, are ubiquitous in genetics. Even for data as simple as mono-genic diseases, populations are a mixture of affected and unaffected individuals. Still, most statistical genetic association analyses, designed to map genes for diseases and other genetic traits, ignore this phenomenon.

In this book, we document methods that incorporate heterogeneity into the design and analysis of genetic and genomic association data. Among the key qualities of our developed statistics is that they include mixture parameters as part of the statistic, a unique component for tests of association. A critical feature of this work is the inclusion of at least one heterogeneity parameter when performing statistical power and sample size calculations for tests of genetic association.

We anticipate that this book will be useful to researchers who want to estimate heterogeneity in their data, develop or apply genetic association statistics where heterogeneity exists, and accurately evaluate statistical power and sample size for genetic association through the application of robust experimental design.




Derek Gordon, PhD, is Associate Professor in the Department of Genetics at Rutgers, The State University of New Jersey, and is Full Academic Member of the Human Genetics Institute of New Jersey. For more than a decade, Dr. Gordon has served on the Editorial Board of the journal Human Heredity. From 2004 to 2013, Dr. Gordon was the Managing Editor for this journal. Currently, Dr. Gordon serves on the Editorial Board of the online journal BMC Bioinformatics. He has maintained a role as statistical genetics consultant to researchers in industry and academia for several decades.

Stephen J. Finch, PhD, is Professor in the Department of Applied Mathematics and Statistics at Stony Brook University. Professor Finch is co-author of the book, Data Collection in Adoption and Foster Care: The State of the Art in Obtaining Organized Information for Policy Analysis, Program Planning, and Practice (1991, with Fanshel and Grundy), and for several decades has served as statistical consultant to research teams performing longitudinal studies of adolescent social behavior.

Wonkuk Kim is Assistant Professor of Applied Statistics at Chung-Ang University in Korea. His research concerns mixture model-based genetic association and latent trajectory analysis of longitudinal data.

Erscheint lt. Verlag 16.12.2020
Reihe/Serie Statistics for Biology and Health
Statistics for Biology and Health
Zusatzinfo XX, 352 p. 41 illus., 26 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Studium 2. Studienabschnitt (Klinik) Humangenetik
Technik
Schlagworte Biostatistics • Genomic Classification • Genomic Misclassification • Heterogeneity • Longitudinal Phenotype • mixed models • Mixture Models • Next-generation sequencing • Phenotype Classification • Phenotype Data • Phenotype Misclassification • Statistical genetics
ISBN-10 3-030-61121-3 / 3030611213
ISBN-13 978-3-030-61121-7 / 9783030611217
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Leber, Gallenwege und Pankreas

von Andrea Tannapfel; Günter Klöppel

eBook Download (2020)
Springer Berlin Heidelberg (Verlag)
299,00

von Berit Hackenberg; Anja Hohmann

eBook Download (2023)
Urban & Fischer Verlag - Lehrbücher
26,99