Machine Learning and Knowledge Discovery in Databases -

Machine Learning and Knowledge Discovery in Databases

European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part II
Buch | Softcover
XLIII, 742 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-67660-5 (ISBN)
106,99 inkl. MwSt
The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic.

The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings.

The volumes are organized in topical sections as follows:

Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion.

Part II: deep learning optimization and theory;active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning.

Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics.

Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data.

Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.

 

 

Deep learning optimization and theory.- active learning.- adversarial learning; federated learning.- Kernel methods and online learning.- partial label learning.- reinforcement learning.- transfer and multi-task learning.- Bayesian optimization and few-shot learning.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XLIII, 742 p. 248 illus., 231 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 1187 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Applications • Artificial Intelligence • Bayesian networks • Classification methods • clustering algorithms • Computer Networks • Computer Science • computer vision • conference proceedings • Data Mining • Education • Human-Computer Interaction (HCI) • Image Analysis • Image Processing • Informatics • Information Retrieval • machine learning • network architecture • Network Protocols • Neural networks • Research • Signal Processing • Software Design • Software engineering
ISBN-10 3-030-67660-9 / 3030676609
ISBN-13 978-3-030-67660-5 / 9783030676605
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90