Machine Learning and Knowledge Discovery in Databases
Springer International Publishing (Verlag)
978-3-030-67660-5 (ISBN)
The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings.
The volumes are organized in topical sections as follows:
Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion.
Part II: deep learning optimization and theory;active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning.
Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics.
Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data.
Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.
Deep learning optimization and theory.- active learning.- adversarial learning; federated learning.- Kernel methods and online learning.- partial label learning.- reinforcement learning.- transfer and multi-task learning.- Bayesian optimization and few-shot learning.
Erscheinungsdatum | 01.03.2021 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XLIII, 742 p. 248 illus., 231 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1187 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Applications • Artificial Intelligence • Bayesian networks • Classification methods • clustering algorithms • Computer Networks • Computer Science • computer vision • conference proceedings • Data Mining • Education • Human-Computer Interaction (HCI) • Image Analysis • Image Processing • Informatics • Information Retrieval • machine learning • network architecture • Network Protocols • Neural networks • Research • Signal Processing • Software Design • Software engineering |
ISBN-10 | 3-030-67660-9 / 3030676609 |
ISBN-13 | 978-3-030-67660-5 / 9783030676605 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich