Machine Learning for Time Series Forecasting with Python (eBook)

eBook Download: PDF
2020 | 1. Auflage
224 Seiten
John Wiley & Sons (Verlag)
978-1-119-68237-0 (ISBN)

Lese- und Medienproben

Machine Learning for Time Series Forecasting with Python - Francesca Lazzeri
Systemvoraussetzungen
38,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource

Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling.

Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting.

Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to:

* Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality

* Prepare time series data for modeling

* Evaluate time series forecasting models' performance and accuracy

* Understand when to use neural networks instead of traditional time series models in time series forecasting

Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts.

Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.

FRANCESCA LAZZERI is an accomplished economist who works with machine learning, artificial intelligence, and applied econometrics. She works at Microsoft as a data scientist and machine learning scientist to develop a portfolio of machine learning services. She is a sought-after speaker and has given popular talks at AI conferences and academic seminars at Berkeley, Harvard, and MIT.

Acknowledgments vii

Introduction xv

Chapter 1 Overview of Time Series Forecasting 1

Flavors of Machine Learning for Time Series Forecasting 3

Supervised Learning for Time Series Forecasting 14

Python for Time Series Forecasting 21

Experimental Setup for Time Series Forecasting 24

Conclusion 26

Chapter 2 How to Design an End-to-End Time Series Forecasting Solution on the Cloud 29

Time Series Forecasting Template 31

Business Understanding and Performance Metrics 33

Data Ingestion 36

Data Exploration and Understanding 39

Data Pre-processing and Feature Engineering 40

Modeling Building and Selection 42

An Overview of Demand Forecasting Modeling Techniques 44

Model Evaluation 46

Model Deployment 48

Forecasting Solution Acceptance 53

Use Case: Demand Forecasting 54

Conclusion 58

Chapter 3 Time Series Data Preparation 61

Python for Time Series Data 62

Common Data Preparation Operations for Time Series 65

Time stamps vs. Periods 66

Converting to Timestamps 69

Providing a Format Argument 70

Indexing 71

Time/Date Components 76

Frequency Conversion 78

Time Series Exploration and Understanding 79

How to Get Started with Time Series Data Analysis 79

Data Cleaning of Missing Values in the Time Series 84

Time Series Data Normalization and Standardization 86

Time Series Feature Engineering 89

Date Time Features 90

Lag Features and Window Features 92

Rolling Window Statistics 95

Expanding Window Statistics 97

Conclusion 98

Chapter 4 Introduction to Autoregressive and Automated Methods for Time Series Forecasting 101

Autoregression 102

Moving Average 119

Autoregressive Moving Average 120

Autoregressive Integrated Moving Average 122

Automated Machine Learning 129

Conclusion 136

Chapter 5 Introduction to Neural Networks for Time Series Forecasting 137

Reasons to Add Deep Learning to Your Time Series Toolkit 138

Deep Learning Neural Networks Are Capable of Automatically Learning and Extracting Features from Raw and Imperfect Data 140

Deep Learning Supports Multiple Inputs and Outputs 142

Recurrent Neural Networks Are Good at Extracting Patterns from Input Data 143

Recurrent Neural Networks for Time Series Forecasting 144

Recurrent Neural Networks 145

Long Short-Term Memory 147

Gated Recurrent Unit 148

How to Prepare Time Series Data for LSTMs and GRUs 150

How to Develop GRUs and LSTMs for Time Series Forecasting 154

Keras 155

TensorFlow 156

Univariate Models 156

Multivariate Models 160

Conclusion 164

Chapter 6 Model Deployment for Time Series Forecasting 167

Experimental Set Up and Introduction to Azure Machine Learning SDK for Python 168

Workspace 169

Experiment 169

Run 169

Model 170

Compute Target, RunConfiguration, and ScriptRun Config 171

Image and Webservice 172

Machine Learning Model Deployment 173

How to Select the Right Tools to Succeed with Model Deployment 175

Solution Architecture for Time Series Forecasting with Deployment Examples 177

Train and Deploy an ARIMA Model 179

Configure the Workspace 182

Create an Experiment 183

Create or Attach a Compute Cluster 184

Upload the Data to Azure 184

Create an Estimator 188

Submit the Job to the Remote Cluster 188

Register the Model 189

Deployment 189

Define Your Entry Script and Dependencies 190

Automatic Schema Generation 191

Conclusion 196

References 197

Index 199

Erscheint lt. Verlag 1.12.2020
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Office Programme Outlook
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Schlagworte Computer Science • Data Mining • Data Mining & Knowledge Discovery • Data Mining Statistics • Data Mining u. Knowledge Discovery • Informatik • Maschinelles Lernen • Python (Programmiersprache) • Statistics • Statistik • Time Series • Zeitreihe • Zeitreihen
ISBN-10 1-119-68237-1 / 1119682371
ISBN-13 978-1-119-68237-0 / 9781119682370
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
49,90