Machine Learning in Social Networks -  Manasvi Aggarwal,  M.N. Murty

Machine Learning in Social Networks (eBook)

Embedding Nodes, Edges, Communities, and Graphs
eBook Download: PDF
2020 | 1st ed. 2021
XI, 112 Seiten
Springer Singapore (Verlag)
978-981-334-022-0 (ISBN)
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein-protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area of current interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties. 



M.N. Murty is currently a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore. His research interests are in the area of pattern recognition, data mining, and social network analysis. 

Ms. Manasvi Aggarwal is currently pursuing her M.S. at the Indian Institute of Science, Bangalore. Her research interest is in the areas of social networks and machine learning 


This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein-protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area ofcurrent interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties. 
Erscheint lt. Verlag 25.11.2020
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
SpringerBriefs in Computational Intelligence
Zusatzinfo XI, 112 p. 29 illus., 18 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte complex networks • Deep Learning (DL) • embedded graphs • Embedded node • information networks • mapping function • network embedding • Network representation learning • Neural networks • Protein-Protein Interaction Networks • Telecommunication networks
ISBN-10 981-334-022-3 / 9813340223
ISBN-13 978-981-334-022-0 / 9789813340220
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99