Singular Spectrum Analysis for Time Series (eBook)

eBook Download: PDF
2020 | 2nd ed. 2020
IX, 146 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-62436-4 (ISBN)

Lese- und Medienproben

Singular Spectrum Analysis for Time Series - Nina Golyandina, Anatoly Zhigljavsky
Systemvoraussetzungen
64,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting  combining  elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly  increasing number of novel applications of SSA is a consequence of the  new  fundamental research on SSA and  the recent progress in  computing and software engineering which  made it possible to use SSA for very complicated tasks that were unthinkable  twenty years ago. In this book, the methodology of SSA is concisely  but at the same time comprehensively explained by  two  prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on  the place of SSA among other methods and new sections on multivariate and multidimensional extensions of  SSA.



Nina Golyandina received her MSc and PhD degrees in mathematics at St.Petersburg State University, Russia, in 1985 and 1998, respectively. She started to work at St.Petersburg State University in 1985, where she is currently an Associate Professor of Statistical Modelling Department, Faculty of Mathematics and Mechanics. Her main areas of research interest are statistical modeling and applied statistics, especially time series investigation by means of singular spectrum analysis.  Dr. Golyandina is the coauthor of three monographs on singular spectrum analysis and of more than 30 research papers in refereed journals related to applied probability and statistics. During last twenty years, she was involved in different projects related to singular spectrum analysis.

 Anatoly Zhigljavsky has received his BSc, MSc and PhD degrees in mathematics and statistics at Faculty of Mathematics, St.Petersburg State University. He became professor of statistics at the St.Petersburg State University in 1989. Since 1997 he is a professor, Chair in Statistics at Cardiff University.  Anatoly Zhigljavsky is the author or co-author of 10 monographs on the topics of time series analysis, stochastic global optimization, optimal experimental design and dynamical systems; he is the editor/co-editor of 9 books on various topics and the author of more than 150 research papers in refereed journals. He has organized several major conferences on time series analysis, experimental design and global optimization. In 2019, he has received a prestigious Constantine Caratheodory award by the International Society for Global Optimization for his  contribution to  stochastic optimization.

Erscheint lt. Verlag 23.11.2020
Reihe/Serie SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo IX, 146 p. 44 illus., 38 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Wirtschaft
Schlagworte Forecasting • Multivariate Singular Spectrum Analysis • signal extraction . • Signal Processing • singular value decomposition • Time Series
ISBN-10 3-662-62436-2 / 3662624362
ISBN-13 978-3-662-62436-4 / 9783662624364
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich