Riemann-finsler Geometry
Seiten
2005
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-238-358-7 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-238-358-7 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Presenting discussions on important curvatures such as the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature, this book also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar flag curvature and more.
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such as the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar flag curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical.
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such as the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar flag curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical.
# Finsler Metrics # Structure Equations # Geodesics # Parallel Translations # S-Curvature # Riemann Curvature # Finsler Metrics of Scalar Flag Curvature # Projectively Flat Finsler Metrics
Reihe/Serie | Nankai Tracts in Mathematics ; 6 |
---|---|
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 981-238-358-1 / 9812383581 |
ISBN-13 | 978-981-238-358-7 / 9789812383587 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Sieben ausgewählte Themenstellungen
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95 €
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90 €
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00 €