Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images -

Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images

First Challenge, MyoPS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings

Xiahai Zhuang, Lei Li (Herausgeber)

Buch | Softcover
VIII, 177 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-65650-8 (ISBN)
53,49 inkl. MwSt
This book constitutes the First Myocardial Pathology Segmentation Combining Multi-Sequence CMR Challenge, MyoPS 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 crisis.

The 12 full and 4 short papers presented in this volume were carefully reviewed and selected form numerous submissions. This challenge aims not only to benchmark various myocardial pathology segmentation algorithms, but also to cover the topic of general cardiac image segmentation, registration and modeling, and raise discussions for further technical development and clinical deployment.

Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge.- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge.- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance.- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images.- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble.- Exploring ensemble applications for multi-sequence myocardial pathology segmentation.- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling.- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences.- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network.- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module.- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation.- Accurate Myocardial Pathology Segmentation with Residual U-Net.- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation.- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR.- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation.- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.

Erscheinungsdatum
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo VIII, 177 p. 91 illus., 77 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 296 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Applications • Artificial Intelligence • automatic segmentations • cardiac image modeling • cardiac image registration • cardiac image segmentation • Computer Science • computer vision • conference proceedings • Deep learning • Image Analysis • Image Processing • Image Segmentation • Informatics • machine learning • multi-sequence cmr • myocardial pathology segmentation • Neural networks • Object recognition • object segmentation • pattern recognition • Research • segmentation methods
ISBN-10 3-030-65650-0 / 3030656500
ISBN-13 978-3-030-65650-8 / 9783030656508
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95