Machine Learning - Die Referenz -  Matt Harrison

Machine Learning - Die Referenz (eBook)

Mit strukturierten Daten in Python arbeiten
eBook Download: PDF
2020 | 1. Auflage
246 Seiten
O'Reilly Verlag
978-3-96010-408-7 (ISBN)
Systemvoraussetzungen
29,90 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Das praktische Nachschlagewerk zum Machine Learning mit strukturierten Daten Konzentriert sich auf Themen, die für den praktizierenden Machine-Learning-Anwender interessant sind Enthält eine große Anzahl wertvoller Codebeispiele für strukturierte Daten, die in der Praxis konkret weiterhelfen/ul> Zeigt, wie verschiedene Bibliotheken zur Lösung praktischer Fragestellungen eingesetzt werden Diese praktische Referenz ist eine Sammlung von Methoden, Ressourcen und Codebeispielen zur Lösung gängiger Machine-Learning-Probleme mit strukturierten Daten. Der Autor Matt Harrison hat einen wertvollen Leitfaden zusammengestellt, den Sie als zusätzliche Unterstützung während eines Machine-Learning-Kurses nutzen können oder als Nachschlagewerk, wenn Sie Ihr nächstes ML-Projekt mit Python starten. Das Buch ist ideal für Data Scientists, Softwareentwickler und Datenanalysten, die Machine Learning praktisch anwenden. Es bietet einen Überblick über den kompletten Machine-Learning-Prozess und führt Sie durch die Klassifizierung strukturierter Daten. Sie lernen dann unter anderem Methoden zur Modellauswahl, zur Regression, zur Reduzierung der Dimensionalität und zum Clustering kennen. Die Codebeispiele sind so kompakt angelegt, dass Sie sie für Ihre eigenen Projekte verwenden und auch gut anpassen können.

Matt Harrison leitet MetaSnake, ein Trainings- und Beratungsunternehmen für Python und Data Science. Er setzt Python seit 2000 in einer Vielzahl von Bereichen ein: Data Science, BI, Speicherung, Testing und Automatisierung, Open-Source-Stack-Management und Finanzen.

Matt Harrison leitet MetaSnake, ein Trainings- und Beratungsunternehmen für Python und Data Science. Er setzt Python seit 2000 in einer Vielzahl von Bereichen ein: Data Science, BI, Speicherung, Testing und Automatisierung, Open-Source-Stack-Management und Finanzen.

Erscheint lt. Verlag 28.10.2020
Übersetzer Thomas Lotze
Verlagsort Heidelberg
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte AI • Algorithmen • Artificial Intelligence • Data Science • KI • Künstliche Intelligenz • Maschinelles Lernen • Neural networks • NumPy • Pandas • scikit-learn • Statistische Datenanalyse • supervised learning • überwachtes Lernen
ISBN-10 3-96010-408-1 / 3960104081
ISBN-13 978-3-96010-408-7 / 9783960104087
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Handbuch für Webentwickler

von Philip Ackermann

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Handbuch

von Johannes Ernesti; Peter Kaiser

eBook Download (2023)
Rheinwerk Computing (Verlag)
31,43

von Carsten Bönnen; Volker Drees; André Fischer …

eBook Download (2024)
SAP Press (Verlag)
62,93