Practical TensorFlow.js (eBook)
XXIV, 303 Seiten
Apress (Verlag)
978-1-4842-6273-3 (ISBN)
- Build deep learning products suitable for web browsers
- Work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN)
- Develop apps using image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis
Juan De Dios Santos Rivera is a machine learning engineer who focuses on building data-driven and machine learning-driven platforms. As a Big Data Software Engineer for mobile apps, his role has been to build solutions to detect spammers and avoid the proliferation of them. This book goes hand-to-hand with that role in building data solutions. As the AI field keeps growing, developers need to keep extending the reach of our products to every platform out there, which includes web browsers.
Develop and deploy deep learning web apps using the TensorFlow.js library. TensorFlow.?js? is part of a bigger framework named TensorFlow, which has many tools that supplement it, such as TensorBoard?, ?ml5js?, ?tfjs-vis. This book will cover all these technologies and show they integrate with TensorFlow.?js? to create intelligent web apps.The most common and accessible platform users interact with everyday is their web browser, making it an ideal environment to deploy AI systems. TensorFlow.js is a well-known and battle-tested library for creating browser solutions. Working in JavaScript, the so-called language of the web, directly on a browser, you can develop and serve deep learning applications.You'll work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). Through hands-on examples, apply these networks in use cases related to image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis.Also, these topics are very varied in terms of the kind of data they use, their output, and the training phase. Not everything in machine learning is deep networks, there is also what some call shallow or traditional machine learning. While TensorFlow.js is not the most common place to implement these, you'll be introduce them and review the basics of machine learning through TensorFlow.js.What You'll LearnBuild deep learning products suitable for web browsersWork with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN)Develop apps using image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysisWho This Book Is For Programmers developing deep learning solutions for the web and those who want to learn TensorFlow.js with at least minimal programming and software development knowledge. No prior JavaScript knowledge is required, but familiarity with it is helpful.
Erscheint lt. Verlag | 18.9.2020 |
---|---|
Zusatzinfo | XXIV, 303 p. 67 illus. |
Sprache | englisch |
Themenwelt | Informatik ► Software Entwicklung ► Mobile- / App-Entwicklung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Schlagworte | Artificial Intelligence • Artificial Neural Networks • Computer Science • computer vision • Data Science • Deep learning • JavaScript • machine learning • Natural Language Processing • tensorflow • TensorFlow.js • Web Programming |
ISBN-10 | 1-4842-6273-5 / 1484262735 |
ISBN-13 | 978-1-4842-6273-3 / 9781484262733 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich