Robert Kissell, Ph.D., is President of Kissell Research Group, a global financial and economic consulting firm specializing in quantitative modeling, statistical analysis, and algorithmic trading. He is also a professor at Molloy College in the School of Business and an adjunct professor at the Gabelli School of Business at Fordham University. He has held several senior leadership positions with prominent bulge bracket investment banks including UBS Securities where he was Executive Director of Execution Strategies and Portfolio Analysis, and at JP Morgan where he was Executive Director and Head of Quantitative Trading Strategies. He was previously at Citigroup/Smith Barney where he was Vice President of Quantitative Research, and at Instinet where he was Director of Trading Research. He began his career as an Economic Consultant at R.J. Rudden Associates specializing in energy, pricing, risk, and optimization. Dr. Kissell has written several books and published dozens of journal articles on Algorithmic Trading, Risk, and Finance. He is a coauthor of the CFA Level III reading titled 'Trade Strategy and Execution, CFA Institute 2019.""
Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages. - Provides insight into all necessary components of algorithmic trading including: transaction cost analysis, market impact estimation, risk modeling and optimization, and advanced examination of trading algorithms and corresponding data requirements- Increased coverage of essential mathematics, probability and statistics, machine learning, predictive analytics, and neural networks, and applications to trading and finance- Advanced multiperiod trade schedule optimization and portfolio construction techniques- Techniques to decode broker-dealer and third-party vendor models- Methods to incorporate TCA into proprietary alpha models and portfolio optimizers- TCA library for numerous software applications and programming languages including: MATLAB, Excel Add-In, Python, Java, C/C++, .Net, Hadoop, and as standalone .EXE and .COM applications
Erscheint lt. Verlag | 8.9.2020 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Beruf / Finanzen / Recht / Wirtschaft ► Geld / Bank / Börse |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Recht / Steuern ► Wirtschaftsrecht | |
Wirtschaft ► Betriebswirtschaft / Management ► Finanzierung | |
Betriebswirtschaft / Management ► Spezielle Betriebswirtschaftslehre ► Bankbetriebslehre | |
Wirtschaft ► Betriebswirtschaft / Management ► Unternehmensführung / Management | |
ISBN-10 | 0-12-815631-7 / 0128156317 |
ISBN-13 | 978-0-12-815631-5 / 9780128156315 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 13,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 63,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich