Bayesian Inference - Hanns Ludwig Harney

Bayesian Inference

Parameter Estimation and Decisions
Buch | Hardcover
XIII, 263 Seiten
2003 | 2003
Springer Berlin (Verlag)
978-3-540-00397-7 (ISBN)
101,60 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Solving a longstanding problem in the physical sciences, this text and reference generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. The text is written at introductory level, with many examples and exercises.

1 Knowledge and Logic.- 2 Bayes’ Theorem.- 3 Probable and Improbable Data.- 4 Description of Distributions I: Real x.- 5 Description of Distributions II: Natural x.- 6 Form Invariance I: Real x.- 7 Examples of Invariant Measures.- 8 A Linear Representation of Form Invariance.- 9 Beyond Form Invariance: The Geometric Prior.- 10 Inferring the Mean or Standard Deviation.- 11 Form Invariance II: Natural x.- 12 Independence of Parameters.- 13 The Art of Fitting I: Real x.- 14 Judging a Fit I: Real x.- 15 The Art of Fitting II: Natural x.- 16 Judging a Fit II: Natural x.- 17 Summary.- A Problems and Solutions.- A.1 Knowledge and Logic.- A.2 Bayes’ Theorem.- A.3 Probable and Improbable Data.- A.7 Examples of Invariant Measures.- A.8 A Linear Representation of Form Invariance.- A.9 Beyond Form Invariance: The Geometric Prior.- A.10 Inferring the Mean or Standard Deviation.- A.12 Independence of Parameters.- B.1 The Correlation Matrix.- B.2 Calculation of a Jacobian.- B.4 The Beta Function.- C.1 The Multinomial Theorem.- D Form Invariance I: Probability Densities.- D.1 The Invariant Measure of a Group.- E Beyond Form Invariance: The Geometric Prior.- E.1 The Definition of the Fisher Matrix.- E.2 Evaluation of a Determinant.- E.3 Evaluation of a Fisher Matrix.- E.4 The Fisher Matrix of the Multinomial Model.- F Inferring the Mean or Standard Deviation.- G.1 Destruction and Creation Operators.- G.2 Unitary Operators.- G.3 The Probability Amplitude of the Histogram.- G.4 Form Invariance of the Histogram.- G.5 Quasi-Events in the Histogram.- G.6 Form Invariance of the Binomial Model.- G.7 Conservation of the Number of Events.- G.8 Normalising the Posterior of the Binomial Model.- G.9 Lack of Form Invariance of the Multinomial Model.- H Independence of Parameters.- H.1 On the Measure of a Factorising Group.- H.2 Marginal Distribution of the Posterior of the Multinomial Model.- H.3 A Minor Posterior of the Multinomial Model.- I.1 A Factorising Gaussian Model.- I.2 A Basis for Fourier Expansions.- J.2 The Deviation Between Two Distributions.- References.

Reihe/Serie Advanced Texts in Physics
Zusatzinfo XIII, 263 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 564 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Bayes-Statistik • Bayes Theorem • best fit • Correlation • Data Analysis • Econophysics • Fitting • Fitting Data • Invariance • Invariant Meassure • Non Gaussian Distribution • quantum mechanics • standard deviation • Variance
ISBN-10 3-540-00397-5 / 3540003975
ISBN-13 978-3-540-00397-7 / 9783540003977
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99