Introduction to Complex Analysis - H. A. Priestley

Introduction to Complex Analysis

(Autor)

Buch | Softcover
344 Seiten
2003 | 2nd Revised edition
Oxford University Press (Verlag)
978-0-19-852562-2 (ISBN)
54,85 inkl. MwSt
Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. This book offers a detailed presentation of elementary topics, to reflect the knowledge base of students.
Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter.

This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.

Complex numbers ; Geometry in the complex plane ; Topology and analysis in the complex plane ; Holomorphic functions ; Complex series and power series ; A menagerie of holomorphic functions ; Paths ; Multifunctions: basic track ; Conformal mapping ; Cauchy's theorem: basic track ; Cauchy's theorem: advanced track ; Cauchy's formulae ; Power series representation ; Zeros of holomorphic functions ; Further theory of holomorphic functions ; Singularities ; Cauchy's residue theorem ; Contour integration: a technical toolkit ; Applications of contour integration ; The Laplace transform ; The Fourier transform ; Harmonic functions and holomorphic functions ; Bibliography ; Notation index ; Index

Erscheint lt. Verlag 28.8.2003
Zusatzinfo numerous figures
Verlagsort Oxford
Sprache englisch
Maße 156 x 233 mm
Gewicht 526 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-19-852562-1 / 0198525621
ISBN-13 978-0-19-852562-2 / 9780198525622
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99