Für diesen Artikel ist leider kein Bild verfügbar.

Locally Finite Planar Edge-Transitive Graphs

Buch | Softcover
75 Seiten
1997
American Mathematical Society (Verlag)
978-0-8218-0556-5 (ISBN)
49,80 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
The nine finite, planar, 3-connected, edge-transitive graphs have been known and studied for many centuries. The infinite, locally finite, planar, 3-connected, edge-transitive graphs can be classified according to the number of their ends (the supremum of the number of infinite components when a finite subgraph is deleted). Prior to this study the 1-ended graphs in this class were identified by Grunbaum and Shephard as 1-skeletons of tessellations of the hyperbolic plane; Watkins characterized the 2-ended members. Any remaining graphs in this class must have uncountably many ends. In this work, infinite-ended members of this class are shown to exist. A more detailed classification scheme in terms of the types of Petrie walks in the graphs in this class and the local structure of their automorphism groups is presented. Explicit constructions are devised for all of the graphs in most of the classes under this new classification. Also included are partial results toward the complete description of the graphs in the few remaining classes.
Erscheint lt. Verlag 30.4.1997
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Gewicht 198 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
Schlagworte Memoirs of the AMS; No. 601
ISBN-10 0-8218-0556-8 / 0821805568
ISBN-13 978-0-8218-0556-5 / 9780821805565
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95