Physics of Fractal Operators - Bruce West, Mauro Bologna, Paolo Grigolini

Physics of Fractal Operators

Buch | Hardcover
354 Seiten
2003
Springer-Verlag New York Inc.
978-0-387-95554-4 (ISBN)
53,49 inkl. MwSt
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.

1 Non-differentiable processes.- 1.1 Classical mechanics.- 1.2 Langevin equation.- 1.3 Comments on the physics of the fractional calculus.- 1.4 Commentary.- 2 Failure of traditional models.- 2.1 Fractals; geometric and otherwise.- 2.2 Generalized Weierstrass function.- 2.3 Fractional operators.- 2.4 Intervals of the generalized Weierstrass function.- 2.5 Commentary.- 3 Fractional dynamics.- 3.1 Elementary properties of fractional derivatives.- 3.2 The generalized exponential functions.- 3.3 Parametric derivatives.- 3.4 Commentary.- 4 Fractional Fourier transforms.- 4.1 A brief review of Fourier analysis.- 4.2 Linear fields.- 4.3 Fourier transforms in the fractional calculus.- 4.4 Generalized Fourier transform.- 4.5 Commentary.- 5 Fractional Laplace transforms.- 5.1 Solving differential equations.- 5.2 Generalized exponentials.- 5.3 Fractional Green’s functions.- 5.4 Commentary.- 6 Fractional randomness.- 6.1 Ordinary random walk.- 6.2 Continuous-time random walk.- 6.3 Fractional random walks.- 6.4 Fractal stochastic time series.- 6.5 Evolution of probability densities.- 6.6 Langevin equation with Lévy statistics.- 6.7 Commentary.- 7 Fractional Rheology.- 7.1 History and definitions.- 7.2 Fractional relaxation.- 7.3 Path integrals.- 7.4 Commentary.- 8 Fractional stochastics.- 8.1 Fractional stochastic equations.- 8.2 Memory kernels.- 8.3 The continuous master equation.- 8.4 Back to Langevin.- 9 The ant in the gurge metaphor.- 9.1 Lévy statistics and renormalization.:.- 9.2 An ad hoc derivation.- 9.3 Fractional eigenvalue equation.- 9.4 Fractional stochastic oscillator.- 9.5 Fractional propagation-transport equation.- 9.6 Commentary.- 10 Appendix.- 10.1 Special functions.- 10.2 Fractional derivatives.- 10.3 Mellin transforms.

Erscheint lt. Verlag 14.1.2003
Reihe/Serie Institute for Nonlinear Science
Zusatzinfo 23 Illustrations, black and white; X, 354 p. 23 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
ISBN-10 0-387-95554-2 / 0387955542
ISBN-13 978-0-387-95554-4 / 9780387955544
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
25,00
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch (2024)
Springer Vieweg (Verlag)
37,99