Foundational Python for Data Science - Kennedy Behrman

Foundational Python for Data Science

(Autor)

Buch | Softcover
256 Seiten
2022
Pearson (Verlag)
978-0-13-662435-6 (ISBN)
43,45 inkl. MwSt
Data science and machine learning—two of the world's hottest fields—are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. 

Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving.

Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more—all created with Colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.

Kennedy Behrman is a veteran software and data engineer. He first used Python writing asset management systems in the Visual Effects industry. He then moved into the startup world, using Python at startups using machine learning to characterize videos and predict the social media power of athletes.

Preface xiii
I:  Learning Python in a Notebook Environment 1
1  Introduction to Notebooks 3
2  Fundamentals of Python 13
3  Sequences 25
4  Other Data Structures 37
5  Execution Control 55
6  Functions 67
II: Data Science Libraries 83
7  NumPy 85
8  SciPy 103
9  Pandas 113
10  Visualization Libraries 135
11  Machine Learning Libraries 153
12  Natural Language Toolkit 159
III: Intermediate Python 171
13  Functional Programming 173
14  Object-Oriented Programming 187
15  Other Topics 201
A  Answers to End-of-Chapter Questions 215
Index 221

Erscheinungsdatum
Reihe/Serie Addison-Wesley Data & Analytics Series
Sprache englisch
Maße 178 x 230 mm
Gewicht 420 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-13-662435-9 / 0136624359
ISBN-13 978-0-13-662435-6 / 9780136624356
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90