Foundational Python for Data Science
Pearson (Verlag)
978-0-13-662435-6 (ISBN)
Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving.
Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more—all created with Colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.
Kennedy Behrman is a veteran software and data engineer. He first used Python writing asset management systems in the Visual Effects industry. He then moved into the startup world, using Python at startups using machine learning to characterize videos and predict the social media power of athletes.
Preface xiii
I: Learning Python in a Notebook Environment 1
1 Introduction to Notebooks 3
2 Fundamentals of Python 13
3 Sequences 25
4 Other Data Structures 37
5 Execution Control 55
6 Functions 67
II: Data Science Libraries 83
7 NumPy 85
8 SciPy 103
9 Pandas 113
10 Visualization Libraries 135
11 Machine Learning Libraries 153
12 Natural Language Toolkit 159
III: Intermediate Python 171
13 Functional Programming 173
14 Object-Oriented Programming 187
15 Other Topics 201
A Answers to End-of-Chapter Questions 215
Index 221
Erscheinungsdatum | 29.09.2021 |
---|---|
Reihe/Serie | Addison-Wesley Data & Analytics Series |
Sprache | englisch |
Maße | 178 x 230 mm |
Gewicht | 420 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
ISBN-10 | 0-13-662435-9 / 0136624359 |
ISBN-13 | 978-0-13-662435-6 / 9780136624356 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich