Noise Filtering for Big Data Analytics

Buch | Hardcover
VIII, 156 Seiten
2022
De Gruyter (Verlag)
978-3-11-069709-4 (ISBN)
97,95 inkl. MwSt
This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model. Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information. This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.

Souvik Bhattacharyya, Koushik Ghosh, University of Burdwan,West Bengal, India

Erscheinungsdatum
Reihe/Serie De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences ; 12
Zusatzinfo 75 b/w ill., 12 b/w tbl.
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 543 g
Themenwelt Mathematik / Informatik Informatik
Schlagworte Angewandte Mathematik • Big Data • Künstliche Intelligenz • Maschinelles Lernen
ISBN-10 3-11-069709-2 / 3110697092
ISBN-13 978-3-11-069709-4 / 9783110697094
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
leichter Einstieg für Senioren

von Philip Kiefer

Buch | Softcover (2024)
Markt + Technik Verlag
9,95