Randomly Deployed Wireless Sensor Networks -  Xi Chen

Randomly Deployed Wireless Sensor Networks (eBook)

(Autor)

eBook Download: EPUB
2020 | 1. Auflage
134 Seiten
Elsevier Science (Verlag)
978-0-12-822771-8 (ISBN)
Systemvoraussetzungen
131,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Wireless sensor networks have a range of applications, including military uses and in environmental monitoring. When an area of interest is inaccessible by conventional means, such a network can be deployed in ways resulting in a random distribution of the sensors. Randomly Deployed Wireless Sensor Networks offers a probabilistic method to model and analyze these networks. The book considers the network design, coverage, target detection, localization and tracking of sensors in randomly deployed wireless networks, and proposes a stochastic model. It quantifies the relationship between parameters of the network and its performance, and puts forward a communication protocol. The title provides analyses and formulas, giving engineering insight into randomly deployed wireless sensor networks. Five chapters consider the analysis of coverage performance; working modes and scheduling mechanisms; the relationship between sensor behavior and network performance properties; probabilistic forwarding routing protocols; localization methods for multiple targets and target number estimation; and experiments on target localization and tracking with a Mica sensor system. - Details a probabilistic method to model and analyze randomly deployed wireless sensor networks - Gives working modes and scheduling mechanisms for sensor nodes, allowing high-probability of target detection - Considers the relationship between sensor behaviour and network performance and lifetime - Offers probabilistic forwarding routing protocols for randomly deployed wireless sensor networks - Describes a method for localizing multiple targets and estimating their number

Xi Chen is Associate Professor in the Department of Automation at Tsinghua University in China. She received her PhD from the Chinese University of Hong Kong. Her research focuses on stochastic control and optimisation, the Markov decision process, wireless sensor networks, and evolutionary computing. Currently, she plays a leading role in the Department of Automation, working on wireless sensor networks. She has published over 50 papers, and four books.
Wireless sensor networks have a range of applications, including military uses and in environmental monitoring. When an area of interest is inaccessible by conventional means, such a network can be deployed in ways resulting in a random distribution of the sensors. Randomly Deployed Wireless Sensor Networks offers a probabilistic method to model and analyze these networks. The book considers the network design, coverage, target detection, localization and tracking of sensors in randomly deployed wireless networks, and proposes a stochastic model. It quantifies the relationship between parameters of the network and its performance, and puts forward a communication protocol. The title provides analyses and formulas, giving engineering insight into randomly deployed wireless sensor networks. Five chapters consider the analysis of coverage performance; working modes and scheduling mechanisms; the relationship between sensor behavior and network performance properties; probabilistic forwarding routing protocols; localization methods for multiple targets and target number estimation; and experiments on target localization and tracking with a Mica sensor system. - Details a probabilistic method to model and analyze randomly deployed wireless sensor networks- Gives working modes and scheduling mechanisms for sensor nodes, allowing high-probability of target detection- Considers the relationship between sensor behaviour and network performance and lifetime- Offers probabilistic forwarding routing protocols for randomly deployed wireless sensor networks- Describes a method for localizing multiple targets and estimating their number
Erscheint lt. Verlag 18.6.2020
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 0-12-822771-0 / 0128227710
ISBN-13 978-0-12-822771-8 / 9780128227718
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 12,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Martin Linten; Axel Schemberg; Kai Surendorf

eBook Download (2023)
Rheinwerk Computing (Verlag)
29,90
Das Auto der Zukunft - Vernetzt und autonom fahren

von Roman Mildner; Thomas Ziller; Franco Baiocchi

eBook Download (2024)
Springer Vieweg (Verlag)
37,99