Beginning R 4 - Matt Wiley, Joshua F. Wiley

Beginning R 4

From Beginner to Pro
Buch | Softcover
467 Seiten
2020 | 1st ed.
Apress (Verlag)
978-1-4842-6052-4 (ISBN)
64,19 inkl. MwSt
Learn how to use R 4, write and save R scripts, read in and write out data files, use built-in functions, and understand common statistical methods. This in-depth tutorial includes key R 4 features including a new color palette for charts, an enhanced reference counting system (useful for big data), and new data import settings for text (as well as the statistical methods to model text-based, categorical data). 

Each chapter starts with a list of learning outcomes and concludes with a summary of any R functions introduced in that chapter, along with exercises to test your new knowledge. The text opens with a hands-on installation of R and CRAN packages for both Windows and macOS. The bulk of the book is an introduction to statistical methods (non-proof-based, applied statistics) that relies heavily on R (and R visualizations) to understand, motivate, and conduct statistical tests and modeling.


Beginning R 4 shows the use of R in specific cases such as ANOVA analysis, multiple and moderated regression, data visualization, hypothesis testing, and more. It takes a hands-on, example-based approach incorporating best practices with clear explanations of the statistics being done.


You will:






Acquire and install R and RStudio
Import and export data from multiple file formats
Analyze data and generate graphics (including confidence intervals)
Interactively conduct hypothesis testing
Code multiple and moderated regression solutions



 



Who This Book Is For 



Programmers and data analysts who are new to R.  Some prior experience in programming is recommended. 

Matt Wiley is a tenured, associate professor of mathematics with awards in both mathematics education and honor student engagement. He earned degrees in pure mathematics, computer science, and business administration through the University of California and Texas A&M systems. He serves as director for Victoria College’s quality enhancement plan and managing partner at Elkhart Group Limited, a statistical consultancy. With programming experience in R, C++, Ruby, Fortran, and JavaScript, he has always found ways to meld his passion for writing with his joy of logical problem solving and data science. From the boardroom to the classroom, Matt enjoys finding dynamic ways to partner with interdisciplinary and diverse teams to make complex ideas and projects understandable and solvable. Joshua F. Wiley is a lecturer in the Monash Institute for Cognitive and Clinical Neurosciences and School of Psychological Sciences at Monash University and a senior partner at Elkhart Group Limited, a statistical consultancy.  He earned his PhD from the University of California, Los Angeles, and his research focuses on using advanced quantitative methods to understand the complex interplays of psychological, social, and physiological processes in relation to psychological and physical health.  In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. Through consulting at Elkhart Group Limited and former work at the UCLA Statistical Consulting Group, he has supported a wide array of clients ranging from graduate students, to experienced researchers, and biotechnology companies.  He also develops or co-develops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.

1: Installing R.- 2: Installing Packages and Using Libraries.- 3: Data Input and Output.- 4: Working with Data.- 5: Data and Samples.- 6: Descriptive Statistics.- 7: Understanding Probability and Distribution.- 8: Correlation and Regression.- 9: Confidence Intervals.- 10: Hypothesis Testing.- 11: Multiple Regression.- 12: Moderated Regression.- 13: Analysts of Variance.- Bibliography.

Erscheinungsdatum
Zusatzinfo 66 Illustrations, color; 44 Illustrations, black and white; XX, 467 p. 110 illus., 66 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Big Data • Data • Data Science • Development • language • Models • programming • R • r 4 • Software • source code • Statistics
ISBN-10 1-4842-6052-X / 148426052X
ISBN-13 978-1-4842-6052-4 / 9781484260524
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Hanspeter Mössenböck

Buch | Softcover (2024)
dpunkt (Verlag)
29,90
a beginner's guide to learning llvm compiler tools and core …

von Kai Nacke

Buch | Softcover (2024)
Packt Publishing Limited (Verlag)
49,85