Intelligent Image Analysis for Plant Phenotyping -

Intelligent Image Analysis for Plant Phenotyping

Buch | Hardcover
326 Seiten
2020
CRC Press (Verlag)
978-1-138-03855-4 (ISBN)
218,20 inkl. MwSt
Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques for identifying plant traits using computer vision and imaging technologies. Beautifully illustrated with numerous color images, this book is written for those working at the intersection of computer vision and plant sciences.
Domesticated crops are the result of artificial selection for particular phenotypes or, in some cases, natural selection for an adaptive trait. Plant traits can be identified through image-based plant phenotyping, a process that was, until recently, strenous and time-consuming. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques, using computer vision and imaging technologies. These methodologies provide an automated, non-invasive, and scalable mechanism by which to define and collect plant phenotypes. Beautifully illustrated, with numerous color images, the book focuses on phenotypes measured from individual plants under controlled experimental conditions, which are widely available in high-throughput systems.

Features:






Presents methodologies for image processing, including data-driven and machine learning techniques for plant phenotyping.



Features information on advanced techniques for extracting phenotypes through images and image sequences captured in a variety of modalities.



Includes real-world scientific problems, including predicting yield by modeling interactions between plant data and environmental information.



Discusses the challenge of translating images into biologically informative quantitative phenotypes.

A practical resource for students, researchers, and practitioners, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences.

Ashok Samal is a Professor in the Department of Computer Science and Engineering at the University of Nebraska-Lincoln, USA. He received Bachelor of Technology from the Indian Institute of Technology, Kanpur, India, and Ph.D. from the University of Utah, Salt Lake City, USA. His research interests include computer vision and data mining, and he has published extensively in these areas. More recently, he has focused on plant phenotyping and co-leads the Plant Vision Initiative research group at the University of Nebraska-Lincoln. Sruti Das Choudhury is a Research Assistant Professor in the School of Natural Resources at the University of Nebraska-Lincoln, USA. Previously, she was a Postdoctoral Research Associate in the Department of Computer Science and Engineering at the University of Nebraska-Lincoln and an Early Career Research Fellow in the Institute of Advanced Study at the University of Warwick, UK. She received Bachelor of Technology in Information Technology from the West Bengal University of Technology and Master of Technology in Computer Science and Application from the University of Calcutta, India. She obtained her Ph.D. in Computer Science Engineering from the University of Warwick, UK. Her research focus is on biometrics, data science, and most recently, image-based plant phenotyping analysis. She co-leads the Plant Vision Initiative research group at the University of Nebraska-Lincoln.

PART I Basics Chapter 1 Image-Based Plant Phenotyping: Opportunities and Challenges Chapter 2 Multisensor Phenotyping for Crop Physiology Chapter 3 Image Processing Techniques for Plant Phenotyping PART II Techniques Chapter 4 Segmentation Techniques and Challenges in Plant Phenotyping Chapter 5 Structural High-Throughput Plant Phenotyping Based on Image Sequence Analysis Chapter 6 Geometry Reconstruction of Plants Chapter 7 Image-Based Structural Phenotyping of Stems and Branches Chapter 8 Time Series- and Eigenvalue-Based Analysis of Plant Phenotypes Chapter 9 Data-Driven Techniques for Plant Phenotyping Using Hyperspectral Imagery Chapter 10 Machine Learning and Statistical Approaches for Plant Phenotyping Chapter 11 A Brief Introduction to Machine Learning and Deep Learning for Computer Vision PART III Practice Chapter 12 Chlorophyll a Fluorescence Analyses to Investigate the Impacts of Genotype, Species, and Stress on Photosynthetic Efficiency and Plant Productivity Chapter 13 Predicting Yield by Modeling Interactions between Canopy Coverage Image Data, Genotypic and Environmental Information for Soybeans Chapter 14 Field Phenotyping for Salt Tolerance and Imaging Techniques for Crop Stress Biology Chapter 15 The Adoption of Automated Phenotyping by Plant Breeders

Erscheinungsdatum
Zusatzinfo 14 Tables, black and white; 17 Line drawings, color; 76 Line drawings, black and white; 35 Halftones, color; 29 Halftones, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 725 g
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Biologie Botanik
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
ISBN-10 1-138-03855-5 / 1138038555
ISBN-13 978-1-138-03855-4 / 9781138038554
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Baum erzählt seine erstaunliche Geschichte

von Peter Wohlleben

Buch | Hardcover (2024)
Ludwig (Verlag)
23,00

von Konrad Lauber; Gerhart Wagner; Andreas Gygax

Buch | Hardcover (2024)
Haupt Verlag
178,00