Tessellations - Robert Fathauer

Tessellations

Mathematics, Art, and Recreation

(Autor)

Buch | Hardcover
464 Seiten
2020
CRC Press (Verlag)
978-0-367-18597-8 (ISBN)
218,20 inkl. MwSt
This book aims to present a comprehensive introduction to tessellations (tiling) at a level accessible to non-specialists. It covers techniques, tips, and templates to facilitate the creation of mathematical art based on tessellations. Also includes special topics like spiral tilings and tessellation metamorphoses.
Tessellations: Mathematics, Art and Recreation aims to present a comprehensive introduction to tessellations (tiling) at a level accessible to non-specialists. Additionally, it covers techniques, tips, and templates to facilitate the creation of mathematical art based on tessellations. Inclusion of special topics like spiral tilings and tessellation metamorphoses allows the reader to explore beautiful and entertaining math and art.

The book has a particular focus on ‘Escheresque’ designs, in which the individual tiles are recognizable real-world motifs. These are extremely popular with students and math hobbyists but are typically very challenging to execute. Techniques demonstrated in the book are aimed at making these designs more achievable. Going beyond planar designs, the book contains numerous nets of polyhedra and templates for applying Escheresque designs to them.

Activities and worksheets are spread throughout the book, and examples of real-world tessellations are also provided.

Key features






Introduces the mathematics of tessellations, including symmetry



Covers polygonal, aperiodic, and non-Euclidean tilings



Contains tutorial content on designing and drawing Escheresque tessellations



Highlights numerous examples of tessellations in the real world



Activities for individuals or classes



Filled with templates to aid in creating Escheresque tessellations



Treats special topics like tiling rosettes, fractal tessellations, and decoration of tiles

Robert Fathauer has had a life-long interest in art but studied physics and mathematics in college, going on to earn a PhD from Cornell University in electrical engineering. For several years he was a researcher at the Jet Propulsion Laboratory in Pasadena, California. Long a fan of M.C. Escher, he began designing his own tessellations with lifelike motifs in the late 1980s. In 1993, he founded a business, Tessellations, to produce puzzles based on his designs. Over time, Tessellations has grown to include mathematics manipulatives, polyhedral dice, and books. Dr. Fathauer’s mathematical art has always been coupled with recreational math explorations. These include Escheresque tessellations, fractal tilings, and iterated knots. After many years of creating two-dimensional art, he has recently been building ceramic sculptures inspired by both mathematics and biological forms. Another interest of his is photographing mathematics in natural and synthetic objects, particularly tessellations. In addition to creating mathematical art, he’s strongly committed to promoting it through group exhibitions at both the Bridges Conference and the Joint Mathematics Meetings.

1. Introduction to Tessellations. 2. Geometric Tessellations. 3. Symmetry and Transformations in Tessellations. 4. Tessellations in Nature. 5. Decorative and Utilitarian Tessellations. 6. Polyforms and Reptiles. 7. Rosettes and Spirals. 8. Matching Rules, Aperiodic Tiles, and Substitution Tilings. 9. Fractal Tiles and Fractal Tilings. 10. Non-Euclidean Tessellations. 11. Tips on Designing and Drawing Escheresque Tessellations. 12. Special Techniques to Solve Design Problems. 13. Escheresque Tessellations Based on Squares. 14. Escheresque Tessellations Based on Isosceles Right Triangle and Kite-Shaped Tiles. 15. Escheresque Tessellations Based on Equilateral Triangle Tiles. 16. Escheresque Tessellations Based on 60°–120° Rhombus Tiles. 17. Escheresque Tessellations Based on Hexagonal Tiles. 18. Decorating Tiles to Create Knots and Other Designs. 19. Tessellation Metamorphoses and Dissections. 20. Introduction to Polyhedra. 21. Adapting Plane Tessellations to Polyhedra. 22. Tessellating the Platonic Solids. 23. Tessellating the Archimedean Solids. 24. Tessellating Other Polyhedra. 25. Tessellating Other Surfaces.

Erscheinungsdatum
Reihe/Serie AK Peters/CRC Recreational Mathematics Series
Zusatzinfo 2 Tables, black and white; 504 Illustrations, color
Verlagsort London
Sprache englisch
Maße 203 x 254 mm
Gewicht 1600 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-367-18597-0 / 0367185970
ISBN-13 978-0-367-18597-8 / 9780367185978
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95