Machine Learning for Intelligent Decision Science -

Machine Learning for Intelligent Decision Science (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XII, 209 Seiten
Springer Singapore (Verlag)
978-981-15-3689-2 (ISBN)
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book discusses machine learning-based decision-making models, and presents intelligent, hybrid and adaptive methods and tools for solving complex learning and decision-making problems under conditions of uncertainty. Featuring contributions from data scientists, practitioners and educators, the book covers a range of topics relating to intelligent systems for decision science, and examines recent innovations, trends, and practical challenges in the field. The book is a valuable resource for academics, students, researchers and professionals wanting to gain insights into decision-making.




Jitendra Kumar Rout is an Assistant Professor at the School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India. He completed his Masters and PhD at the National Institute of Technology, Rourkela, India, in 2013 and 2017 respectively, and was a lecturer at various engineering colleges, such as GITA and TITE Bhubaneswar. He is a life member of Odisha IT Society (OITS) and has been actively involved in conferences like ICIT (one of the oldest conferences in Odisha). He is also a life member of IEI, and a member of IEEE, ACM, IAENG, and UACEE. His main research interests include data analytics, machine learning, NLP, privacy in social networks and big data, and he has published his work with IEEE and Springer.

Minakhi Rout is currently an Assistant Professor at the School of Computer Engineering, KIIT Deemed to be University. She received her M.tech and Ph.D. degrees in Computer Science & Engineering from Siksha 'O' Anusandhan University, Odisha, India, in 2009 and 2015, respectively. She has more than 13 years of teaching and research experience at various respected institutes, and her interests include computational finance, data mining and machine learning. She has published more than 25 research papers in various respected journals and at international conferences. She is editor for the Turkish Journal of Forecasting.

Himansu Das is an Assistant Professor at the School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India. He holds a B. Tech degree from the Institute of Technical Education and Research, India and an M. Tech degree in Computer Science and Engineering from the National Institute of Science and Technology, India. He has published several research papers in various international journals and at conferences. He has also edited several books for leading international publishers like IGI Global, Springer and Elsevier. He serves as a member of the editorial, review or advisory boards of various journals and conferences. Further, he has served as organizing chair, publicity chair and member of the technical program committees of several national and international conferences. He is also associated with various educational and research societies like IET, IACSIT, ISTE, UACEE, CSI, IAENG, and ISCA. He has more than 10 years of teaching and research experience, and his interests include data mining, soft computing and machine learning.

 



The book discusses machine learning-based decision-making models, and presents intelligent, hybrid and adaptive methods and tools for solving complex learning and decision-making problems under conditions of uncertainty. Featuring contributions from data scientists, practitioners and educators, the book covers a range of topics relating to intelligent systems for decision science, and examines recent innovations, trends, and practical challenges in the field. The book is a valuable resource for academics, students, researchers and professionals wanting to gain insights into decision-making.
Erscheint lt. Verlag 2.4.2020
Reihe/Serie Algorithms for Intelligent Systems
Algorithms for Intelligent Systems
Zusatzinfo XII, 209 p. 113 illus., 78 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Artificial Intelligence • Bioinformatics • data analytics • Data Science • decision science • Deep learning • machine learning
ISBN-10 981-15-3689-9 / 9811536899
ISBN-13 978-981-15-3689-2 / 9789811536892
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99