The Search for Supersymmetry in Hadronic Final States Using Boosted Object Reconstruction (eBook)

(Autor)

eBook Download: PDF
2020 | 1st ed. 2020
XVI, 257 Seiten
Springer International Publishing (Verlag)
978-3-030-34548-8 (ISBN)

Lese- und Medienproben

The Search for Supersymmetry in Hadronic Final States Using Boosted Object Reconstruction - Giordon Stark
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This thesis represents one of the most comprehensive and in-depth studies of the use of Lorentz-boosted hadronic final state systems in the search for signals of Supersymmetry conducted to date at the Large Hadron Collider. A thorough assessment is performed of the observables that provide enhanced sensitivity to new physics signals otherwise hidden under an enormous background of top quark pairs produced by Standard Model processes. This is complemented by an ingenious analysis optimization procedure that allowed for extending the reach of this analysis by hundreds of GeV in mass of these hypothetical new particles. Lastly, the combination of both deep, thoughtful physics analysis with the development of high-speed electronics for identifying and selecting these same objects is not only unique, but also revolutionary. The Global Feature Extraction system that the author played a critical role in bringing to fruition represents the first dedicated hardware device for selecting these Lorentz-boosted hadronic systems in real-time using state-of-the-art processing chips and embedded systems.



Giordon Stark is a postdoctoral researcher at the Santa Cruz Institute for Particle Physics, University of California, Santa Cruz. He received his PhD from the University of Chicago in 2018.

Supervisor's Foreword 7
Acknowledgments 8
Contents 11
1 Introduction 15
2 Standard Model (and Beyond!) 17
2.1 The Standard Model 18
2.1.1 Spontaneous Symmetry Breaking 21
2.1.2 Quantum Electrodynamics (QED) 23
2.1.3 Quantum Chromodynamics (QCD) 27
2.1.4 Parton Distribution Function 31
2.1.5 Top Quark Decays 33
2.2 Beyond the Standard Model 34
2.2.1 Supersymmetry 35
2.2.2 Searching for New Physics Using Simplified Models 39
3 The Large Hadron Collider and the ATLAS Detector 41
3.1 Overview 41
3.2 LHC Upgrades 43
3.3 Operation of the LHC in Run 2 43
3.3.1 Pile-Up at the LHC 46
3.4 ATLAS Overview 48
3.5 ATLAS Geometry 49
3.6 Tracking in the Inner Detector 51
3.7 Calorimetry and the Calorimeter System 54
3.8 Muons and the Muon Spectrometer 59
4 Trigger and Data Acquisition 61
4.1 Overview 61
4.2 The TDAQ Subsystems 63
4.2.1 Level-1 Trigger 63
4.2.1.1 Level-1 Calorimeter Trigger 63
4.2.1.2 Level-1 Muon Trigger 65
4.2.2 HLT 66
4.2.2.1 FTK 66
4.3 Trigger Menu 66
4.4 Data and Simulated Event Samples 67
4.5 ATLAS Trigger System Phase-I Upgrade 69
4.5.1 The Global Feature Extractor Module 71
4.5.2 Slow Control and Monitoring of gFEX 75
4.5.3 Trigger-Aware Analysis Software 79
5 Event Reconstruction 80
5.1 Jets 80
5.1.1 Jet Algorithms 82
5.1.2 Jet Calibrations 86
5.1.2.1 Topocluster Calibration 87
5.1.3 Jet Energy Calibration 88
5.1.3.1 Jet Origin Correction 88
5.1.3.2 Pile-Up Correction 89
5.1.3.3 MC-Based Correction 89
5.1.3.4 Global Sequential Calibration 91
5.1.3.5 In-Situ Calibration 92
5.1.4 Uncertainties 94
5.1.5 Jet Kinematics 95
5.2 Flavor Tagging of Jets 96
5.2.1 Impact Parameter Tagging Algorithms 98
5.2.2 Secondary Vertex Finding Algorithm 98
5.2.3 Decay Chain Multi-Vertex Algorithm 100
5.2.4 Multivariate Algorithm 100
5.3 Muons 103
5.4 Electrons and Photons 105
5.5 Taus 106
5.6 Missing Transverse Momentum 106
6 Boosted Object Reconstruction 109
6.1 Size of Boosted Jets 109
6.2 Objects 111
6.2.1 Small-Radius Jets 112
6.2.2 b-Tagged Jets 113
6.2.3 Leptons 114
6.2.4 Overlap Removal 115
6.2.5 Large-Radius Jets 116
6.2.6 Missing Transverse Momentum 117
7 Search for Massive Supersymmetry at 13TeV 118
7.1 Searching for New Physics: A Counting Experiment 118
7.1.1 Signal Models 118
7.2 Kinematic Variables and Event Selection 120
7.2.1 Kinematic Variables 120
7.2.1.1 Object Multiplicity 120
7.2.1.2 Effective Mass 120
7.2.1.3 Transverse Mass 121
7.2.1.4 Total Jet Mass 121
7.2.1.5 Multijet Suppression 122
7.2.2 Event Selection 122
7.2.2.1 Good Runs 123
7.2.2.2 Tile, LAr, and SCT 124
7.2.2.3 Trigger 124
7.2.2.4 Jet Cleaning 125
7.2.2.5 Muon Cleaning 125
7.3 Preselection Comparisons of Data/MC 126
7.4 Optimizations 127
7.4.1 Analysis Strategy and Background Treatment 130
7.4.2 Optimization Strategy 131
7.4.3 Gtt-0L Optimization 131
7.4.3.1 Signal Regions 134
7.4.3.2 Control Regions 134
7.4.3.3 Validation Regions 134
7.4.3.4 Background Composition 135
7.4.3.5 N-1 Plots 136
7.4.4 Gtt-1L Optimization 136
7.4.4.1 Signal Regions 137
7.4.4.2 Control Regions 139
7.4.4.3 Validation Regions 142
7.4.4.4 Background Composition 143
7.4.4.5 N-1 Plots 143
7.5 Region Definitions for Cut-and-Count Analysis 144
7.6 Semi Data-Driven tbart Normalization 148
7.7 Systematic Uncertainties 149
7.7.1 Experimental Systematic Uncertainties 151
7.7.2 Theoretical Systematic Uncertainties on Background 151
7.7.3 Systematic Uncertainties on the Signal 155
7.7.4 Other Systematic Uncertainties 155
8 Results 156
8.1 General Likelihood 156
8.2 Background-Only Fit 158
8.2.1 Validation 158
8.2.2 Unblinding 159
8.3 Limits 160
8.4 Signal Acceptances and Experimental Efficiencies 165
9 Upgrade Studies 167
9.1 Motivating gFEX 168
9.2 gFEX Algorithms 170
9.2.1 The Reconstruction Algorithm 170
9.2.2 The Offline-Trigger Object Pairing Algorithm 170
9.2.3 Event Displays 171
9.3 Efficiency of Triggers 171
9.4 gFEX Studies 177
9.4.1 Pile-Up Energy Density Calculations 177
9.4.2 Pile-Up Mitigation Studies 181
9.4.2.1 Efficiency of Pile-Up Mitigation Techniques 184
9.4.3 Substructure Studies 186
10 Conclusion 190
A Optimizing Optimizations 192
A.1 Major Dependencies 192
A.2 Top-Level 193
A.2.1 Parameters 193
B xAODAnaHelpers 194
B.1 Background 194
C Ironman: Slow-Control and Monitoring 196
C.1 IPBus 196
C.2 Ironman 196
C.2.1 Server 197
C.2.2 Hardware 199
C.2.3 Jarvis, the Client 200
C.2.4 Internal Communications 200
C.3 Technical Details 201
C.3.1 Dependencies 201
C.4 Code Examples 201
C.4.1 Parse and Build IPBus Packets 201
C.4.2 Implementing IPBus 202
C.4.3 Implementing Jarvis 203
C.5 Implementing Callback Chain 203
D N-1 Plots 205
D.1 0-Lepton 205
D.2 1-Lepton 205
E ttbar Heavy-Flavor Classification/Flavor Contamination 212
E.1 0-Lepton Composition 212
E.2 1-Lepton Composition 212
F Sample List 223
F.1 tbart +Jets 224
F.1.1 Nominal 224
F.1.2 Systematic Samples 224
F.2 Single-Top Samples 225
F.3 tbart +X (X=W,Z,WW,H,tbart) 225
F.4 W+Jets 226
F.5 Z+Jets 228
F.6 Gtt Signal (Off-Shell) 230
F.7 Gtt Signal (On-Shell) 233
F.8 Gbb Signal 237
G Model-Dependent Limits by Region 241
H HEPData Plots 243
Glossary 247
Glossary 247
Bibliography 251

Erscheint lt. Verlag 13.3.2020
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XVI, 257 p. 150 illus., 140 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik
Schlagworte boosted object reconstruction • data acquisition at the Large Hadron Collider • global feature extraction • hadronic final states • jet substructure • physics beyond the standard model • pile-up mitigation techniques • search for supersymmetry
ISBN-10 3-030-34548-3 / 3030345483
ISBN-13 978-3-030-34548-8 / 9783030345488
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90