A Primer on Process Mining (eBook)

Practical Skills with Python and Graphviz
eBook Download: PDF
2020 | 2nd ed. 2020
X, 96 Seiten
Springer International Publishing (Verlag)
978-3-030-41819-9 (ISBN)

Lese- und Medienproben

A Primer on Process Mining - Diogo R. Ferreira
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The main goal of this book is to explain the core ideas of process mining, and to demonstrate how they can be implemented using just some basic tools that are available to any computer scientist or data scientist. It describes how to analyze event logs in order to discover the behavior of real-world business processes. The end result can often be visualized as a graph, and the book explains how to use Python and Graphviz to render these graphs intuitively. Overall, it enables the reader to implement process mining techniques on his or her own, independently of any specific process mining tool. An introduction to two popular process mining tools, namely Disco and ProM, is also provided. In this second edition the code snippets have been updated to Python 3, and some smaller errors have been corrected.

The book will be especially valuable for self-study or as a precursor to a more advanced text. Practitioners and students will be able to follow along on their own, even if they have no prior knowledge of the topic. After reading this book, they will be able to more confidently proceed to the research literature if needed.


Diogo R. Ferreira is Professor of Information Systems at the University of Lisbon, where he specializes on process mining, data analysis, and systems integration. He has been recognized several times for his pedagogical approach while teaching those subjects to computer science and other engineering students. He has supervised about thirty graduate students, and is the author of numerous publications. He has a particular interest in understanding processes (just about any kind of process) from the analysis of real-world event data.

Preface to the Second Edition 6
Preface to the First Edition 7
Contents 9
1 Event Logs 11
1.1 Process Model vs. Process Instances 12
1.2 Task Allocation 13
1.3 Identifying the Process Instances 14
1.4 Recording Events in an Event Log 15
1.5 Event Logs in CSV Format 16
1.6 Reading an Event Log with Python 17
1.7 Sorting an Event Log with Python 19
1.8 Reading the Event Log as a Dictionary 21
1.9 Summary 22
2 Control-Flow Perspective 24
2.1 The Transition Matrix 24
2.2 The Control-Flow Algorithm 25
2.3 Implementation in Python 26
2.4 Introducing Graphviz 27
2.5 Using PyGraphviz 29
2.6 Edge Thickness 30
2.7 Activity Counts 33
2.8 Node Coloring 35
2.9 Summary 37
3 Organizational Perspective 39
3.1 Handover of Work 39
3.2 Implementing Handover of Work 40
3.3 Working Together 42
3.4 Implementing Working Together 43
3.5 Undirected Graphs 45
3.6 Edge Thickness 47
3.7 Users and Activities 48
3.8 Work Distribution 50
3.9 Summary 52
4 Performance Perspective 54
4.1 Dates and Times in Python 54
4.2 Parsing the Timestamps 56
4.3 Average Timestamp Difference 57
4.4 Drawing the Graph 59
4.5 Analyzing the Timeline of Events 61
4.6 Plotting the Dotted Chart 62
4.7 Using Relative Time 64
4.8 Activity Duration 67
4.9 Summary 70
5 Process Mining in Practice 72
5.1 The BPI Challenge 2012 72
5.2 Understanding the XES Format 75
5.3 Reading XES with Python 77
5.4 Analyzing the Control-Flow Perspective 79
5.5 Analyzing the Organizational Perspective 82
5.6 Analyzing the Performance Perspective 85
5.7 Process Mining with Disco 89
5.8 Process Mining with ProM 93
5.9 Conclusion 100
References 101

Erscheint lt. Verlag 27.2.2020
Reihe/Serie SpringerBriefs in Information Systems
SpringerBriefs in Information Systems
Zusatzinfo X, 96 p. 10 illus. in color.
Sprache englisch
Original-Titel A Primer on Process Mining
Themenwelt Mathematik / Informatik Informatik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Business Intelligence • business process management • Graphviz • information systems • Process Mining • Python
ISBN-10 3-030-41819-7 / 3030418197
ISBN-13 978-3-030-41819-9 / 9783030418199
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Planung und Durchführung von Audits nach ISO 9001:2015

von Gerhard Gietl; Werner Lobinger

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99
Praxishandbuch betriebswirtschaftlicher Grundlagen für …

von Andreas Frodl

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
49,99