Multi-body Dynamic Modeling of Multi-legged Robots -  Abhijit Mahapatra,  Dilip Kumar Pratihar,  Shibendu Shekhar Roy

Multi-body Dynamic Modeling of Multi-legged Robots (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XXXI, 203 Seiten
Springer Singapore (Verlag)
978-981-15-2953-5 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments.

The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.



Dr. Abhijit Mahapatra received  B.E. and M.Tech. degrees in Mechanical Engineering from B.E. College (now, BESU), Shibpur, India, and NIT Durgapur, India, in 2002 and 2008, respectively. He received his Ph.D. from NIT Durgapur, India, in 2018. He is currently working as a Senior Scientist in the Advanced Design and Analysis Group at CSIR- Central Mechanical Engineering Research Institute, Durgapur, India.
Dr. Mahapatra has published a number of research papers in national and international journals and conference proceedings and filed several patents in the area of product development. His current research interests include design & analysis, multi-body dynamics, and modelling and simulating legged robots.

Dr. Shibendu Shekhar Roy received B.E. and M.Tech. degrees in Mechanical Engineering from NIT, Durgapur. He also holds a Ph.D. from IIT, Kharagpur, India. He is currently working as a Professor at the Department of Mechanical Engineering and Associate Dean (Alumni Affairs & Outreach) at the National Institute of Technology, Durgapur.
Dr. Roy has published more than 68 papers in national and international journals and conference proceedings, as well as 4 book chapters, and has filed a number of patents in the area of product development. His current research interests include modelling and simulating legged robots, soft robotics, rehabilitation robotics, additive manufacturing and 3D printing on macro- and micro-scales.

Dr. Dilip Kumar Pratihar completed his  B.E. and M. Tech. in Mechanical Engineering at NIT, Durgapur, India, in 1988 and 1995, respectively. He received his Ph.D. from IIT Kanpur in 2000. Dr. Pratihar pursued postdoctoral studies in Japan and then in Germany under the Alexander von Humboldt Fellowship Program. He is currently working as a Professor at IIT Kharagpur, India. His research areas include robotics, soft computing and manufacturing science.
He has made significant contributions in the development of intelligent autonomous systems in various fields, including robotics, and manufacturing science. He has published more than 230 papers, mostly in international journals, and is on the editorial board of 12 international journals. He is a member of the FIE, MASME and SMIEEE. He has completed a number of sponsored (funded by DST, DAE, MHRD, DBT) and consultancy projects and is a member of Expert Committee of Advanced Manufacturing Technology, DST, Government of India.


This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton-Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.

Preface 7
Acknowledgements 8
Contents 9
About the Authors 11
Nomenclature 13
List of Figures 21
List of Tables 29
1 Introduction 30
1.1 Introduction to Multi-legged Robots 30
1.2 Legged Robot’s Locomotion 31
1.2.1 Leg Mechanisms and Comparisons: Multi-legged Robots 33
1.2.2 Advantages of Multi-legged Robots 34
1.2.3 Disadvantages of Multi-legged Robots 35
1.2.4 Applications of Multi-legged Robots 35
1.3 VP Tools for Modeling and Analysis of Multi-legged Robots 36
1.4 Summary 37
References 37
2 Multi-Legged Robots—A Review 39
2.1 Gait Planning of Multi-Legged Robots 39
2.1.1 Kinematics of Multi-Legged Robots 40
2.1.2 Dynamics of Multi-Legged Robots 41
2.1.3 Foot-Ground Contact Modeling 42
2.2 Power Consumption Analysis of Multi-Legged Robots 44
2.3 Stability Analysis of Multi-Legged Robots 48
2.4 Summary 52
References 52
3 Kinematic Modeling and Analysis of Six-Legged Robots 61
3.1 Description of the Problem 61
3.1.1 Description of Proposed Six-Legged Walking Robot 61
3.1.2 Gait Terminologies and Their Relationships 63
3.2 Analytical Framework 64
3.2.1 Reference System in Cartesian Coordinates 64
3.2.2 Kinematic Constraint Equations 68
3.2.3 Inverse Kinematic Model of the Six-Legged Robotic System 71
3.2.4 Terrain Model 73
3.2.5 Locomotion Planning on Various Terrains 74
3.2.6 Gait Planning Strategy 86
3.2.7 Evaluation of Kinematic Parameters 88
3.2.8 Estimation of Aggregate Center of Mass 92
3.3 Numerical Simulation: Study of Kinematic Motion Parameters 94
3.3.1 Case Study 1: Robot Motion in an Uneven Terrain with Straight-Forward Motion (DF = 1/2) 95
3.3.2 Case Study 2: Crab Motion of the Robot on a Banked Terrain (DF = 3/4) 97
3.4 Summary 102
References 104
4 Multi-body Inverse Dynamic Modeling and Analysis of Six-Legged Robots 105
4.1 Analytical Framework 105
4.1.1 Implicit Constrained Inverse Dynamic Model 106
4.1.2 Newtonian Mechanics with Explicit Constraints 108
4.1.3 Three-Dimensional Contact Force Model 110
4.1.4 Static Equilibrium Moment Equation 120
4.1.5 Actuator Torque Limits 121
4.1.6 Optimal Feet Forces’ Distributions 121
4.1.7 Energy Consumption of a Six-Legged Robot 123
4.1.8 Stability Measures of Six-Legged Robots 124
4.2 Numerical Illustrations 132
4.2.1 Study of Optimal Feet Forces’ Distribution 132
4.2.2 Study of Performance Indices—Power Consumption and Stability Measure 141
4.3 Summary 160
References 161
5 Validation Using Virtual Prototyping Tools and Experiments 164
5.1 Modeling Using Virtual Prototyping Tools 164
5.2 Numerical Simulation and Validation Using VP Tools and Experiments 165
5.2.1 Validation of Kinematic Motion Parameters 165
5.2.2 Validation of Dynamic Motion Parameters 176
5.3 Summary 188
References 191
Appendix 192
Appendix A.1 Matrix Projectors 192
Appendix A.2 Loop Equations w.r.t Frame G 192
Appendix A.3 Important Transformation Matrices 197
Appendix A.4 Trajectory Planning of Swing Leg 198
Appendix A.5 Time Calculations for Gait Planning 206
Appendix A.6 Kinematic Velocity and Acceleration 208
Calculation of Angular Velocities 208
Appendix A.7 Jacobian Matrices 210
Appendix A.8 Parameters Affecting the Dynamics of the Six-Legged Robot 212
Appendix A.9 Kinematic constraints with respect to G0 215
Appendix A.10 Geometrical Interpretation of the Interaction Region 219
Appendix A.11 Objective Function and Evaluation of the Constraints 223
Index 228

Erscheint lt. Verlag 27.2.2020
Reihe/Serie Cognitive Intelligence and Robotics
Zusatzinfo XXXI, 203 p. 81 illus., 72 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Coupled Multi-Body Dynamics • dynamic stability • Energy Consumption • Foot-Terrain Interaction • multi-legged robots
ISBN-10 981-15-2953-1 / 9811529531
ISBN-13 978-981-15-2953-5 / 9789811529535
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90