Knots And Physics
Seiten
1994
|
Second Edition
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-1656-6 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-1656-6 (ISBN)
Zu diesem Artikel existiert eine Nachauflage
An introduction to knot and link invariants as generalized amplitudes for a quasi-physical process. The demands of the knot theory, coupled with a quantum statistical framework, create a context that naturally includes a wide range of interrelated topics in topology and mathematical physics.
In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.
In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.
Physical Knots; States and the Bracket Polynomial; The Jones Polynominal and Its Generalizations; Braids and Polynomials: Formal Feynman Diagrams, Bracket as Vacuum-Vacmum expectation and the Quantum Group SL(2)q; Yang-Baxter Models for Specialization's of the Homfly Polynomial; The Alexander Polynomial; Knot Crystals - Classical Knot Theory in Modem Guise; The Kauffman Polynomial; Three-Manifold Invariants from the Jones Polynomials; integral Heuristics and Witten's lnvariants; Chromatic Polynomials; The Potts Model and the Dichromatic Polynomial; The Penrose Theory of Spin Networks; Knots and Strings - Knotted Strings; DNA and Quantum Field Theory; Knots in Dynamical Systems - The Lorenz Attractor.
Erscheint lt. Verlag | 1.1.1994 |
---|---|
Reihe/Serie | Series on Knots & Everything ; 1 |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
ISBN-10 | 981-02-1656-4 / 9810216564 |
ISBN-13 | 978-981-02-1656-6 / 9789810216566 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren
Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95 €