Multiscale Modelling of Advanced Materials -

Multiscale Modelling of Advanced Materials (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XI, 199 Seiten
Springer Singapore (Verlag)
978-981-15-2267-3 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume covers the recent advances and research on the modeling and simulation of materials. The primary aim is to take the reader through the mathematical analysis to the theories of electricity and magnetism using multiscale modelling, covering a variety of numerical methods such as finite difference time domain (FDTD), finite element method (FEM) and method of moments. The book also introduces the multiscale Green's function (GF) method for static and dynamic modelling and simulation results of modern advanced nanomaterials, particularly the two-dimensional (2D) materials. This book will be of interest to researchers and industry professionals working on advanced materials.

Dr Runa Kumari is an Assistant Professor in the Department of Electrical and Electronics Engineering, BITS Pilani Hyderabad Campus. She has done her M.Tech. and PhD from National Institute of Science and Technology (NIST), Odisha and National Institute of Technology (NIT), Rourkela in 2008 and 2014 respectively. Her areas of interest are primarily focused on antenna research, design and applications, and she has authored 28 research publications in reputed journals and conference proceedings.

Dr. Balamati Choudhury is a scientist at the Centre for Electromagnetics of the CSIR-National Aerospace Laboratories, Bangalore, India. She received her M.Tech. (ECE) degree from the National Institute of Science and Technology (NIST), India and PhD (Eng.) degree in Microwave Engineering from Biju Patnaik University of Technology (BPUT), India in 2013. From 2006-2008, she was a senior lecturer at the Department of Electronics and Communication at the NIST, Orissa, India. Her research and teaching interests are in the domain of soft-computing techniques in electromagnetic design and optimization, computational electromagnetics for aerospace applications, metamaterial design applications, radio frequency (RF), and microwaves. She has contributed to a number of projects, including the development of ray tracing techniques for RF analysis of propagation in an indoor environment, low radar cross section (RCS) design, phased arrays and adaptive arrays, and conformal antennas. She was also the recipient of the CSIR-NAL Young Scientist Award for the year 2013-2014 for her contribution in the area of computational electromagnetics for aerospace applications. Dr. Balamati has authored or co-authored over 140 scientific research papers and technical reports, five SpringerBriefs and three book chapters as well as a book entitled: Soft Computing in Electromagnetics: Methods and Applications. Dr. Balamati is also an assistant professor of the Academy of Scientific and Innovative Research (AcSIR), New Delhi.

This volume covers the recent advances and research on the modeling and simulation of materials. The primary aim is to take the reader through the mathematical analysis to the theories of electricity and magnetism using multiscale modelling, covering a variety of numerical methods such as finite difference time domain (FDTD), finite element method (FEM) and method of moments. The book also introduces the multiscale Green's function (GF) method for static and dynamic modelling and simulation results of modern advanced nanomaterials, particularly the two-dimensional (2D) materials. This book will be of interest to researchers and industry professionals working on advanced materials.

Preface 6
Contents 10
About the Editors 11
1 Material Selection Techniques in Materials for Electronics 12
1 Introduction 12
2 Material Selection Methodologies 12
3 Ashby’s Approach 13
4 Topsis Approach 15
5 VIKOR Approach 16
6 Applications for Various Devices 17
6.1 Ashby’s Analysis 19
6.2 TOPSIS Analysis 22
6.3 VIKOR Analysis 22
7 Conclusion 24
References 25
2 Some Aspects of Artificial Engineered Materials: Planar and Conformal Geometries 27
1 Introduction 27
2 Low Loss Planar Wideband LHM Structure Based on E-Shaped Resonator 29
2.1 Unit Cell Analysis 29
2.2 Results and Discussion 30
2.3 Experimental Result 35
3 A Skewed Omega for LHM Characteristics 37
3.1 Numerical and Experiment Analysis of Skewed Omega MTM Unit Cell 38
3.2 Design and Characterization of MTM Unit Cell 39
4 Characterization and EM Response of a Conformal Concentric Sectored Split Sierpinski Resonator 41
4.1 Design of LHM Unit Cell 43
4.2 Results and Discussion 44
5 Summary 47
References 47
3 Advanced Materials for Aerospace Applications 49
1 Introduction 49
2 Challenges in Developing Stealth Materials 51
3 Sub-domains of Stealth 52
3.1 Microwave Stealth 53
3.2 Infrared Stealth 65
3.3 Visible Spectrum 71
4 Conclusion 73
References 73
4 Radar Absorber Design using Two-Dimensional Materials 76
1 Introduction 76
2 Challenges in Conventional Radar Absorber Designs 77
3 RAM Designs based on Nanomaterials 78
3.1 Metamaterial-based Radar Absorbers 78
3.2 Conducting Polymer-based Radar Absorbers 80
3.3 Graphene-based Radar Absorbers 83
4 Conclusion 88
References 88
5 3D Metamaterial Multilayer Structures 90
1 Introduction 90
2 3-Dimensional (3D) Metamaterial 93
2.1 Basic Model of 3D Circular Split-Ring Resonator (3D-CSRR) 95
2.2 3D-Square Split-Ring Resonator (3D-SRR) Metamaterial Structure 100
2.3 3D Dual Circular Split-Ring Resonator (3D-DCSRR) Metamaterial Structure 102
3 Conclusion 104
References 105
6 Metamaterial-Inspired Planar Cells for Miniaturized Filtering Applications 108
1 Introduction 108
2 Compact CPW Metamaterial-Inspired Lines and Its Use in Bandpass Filter 110
2.1 Base Slit Triangular SRR—CPW TL 111
2.2 Base-Coupled TSRR-Loaded CPW 112
2.3 Vertex-Coupled TSRR-Loaded CPW 113
2.4 Parametric Study of Base-Coupled SRR-Loaded CPW 113
3 Metamaterial Microstrip Line for Miniaturized Band-Stop and Bandpass Filter 117
3.1 Hex-Omega-Shaped Metamaterial Resonator 118
3.2 Metamaterial-Inspired Filter Implementation 119
3.3 Parametric Study 123
4 Summary 124
References 125
7 Conducting Polymer-based Antennas 127
1 Introduction 127
2 Materials 128
2.1 Conducting Polymers and RF Antennas 128
3 Antenna Design using Materials 130
3.1 Design and Analysis of Fractal Antenna using Copper Patch 130
3.2 Design and Analysis of Fractal Antenna using PEDOT Patch 135
3.3 Design and Analysis of Fractal Antenna using Polypyrrole Patch 136
3.4 Comparison of Fractal GPS Antennas using Materials 137
4 Conclusion 138
References 140
8 Metamaterial Resonator Antennas 141
1 Introduction 141
2 CRLH T/L-Based MTM Antenna 143
2.1 CRLH T/L Theory 143
2.2 CRLH Antenna Design 145
3 ENG T/L-Based MTM Antenna 147
3.1 ENG T/L Theory 147
3.2 ENG Antenna Design 148
4 MNG T/L-Based MTM Antenna 150
4.1 MNG T/L Theory 151
4.2 MNG Antenna Design 152
5 Conclusion 153
References 154
9 Antenna Performance Enhancement using Metasurface 155
1 Introduction 155
1.1 Metamaterial 156
1.2 Metamaterial to Metasurface 157
1.3 Metasurface 158
2 Challenges of Metasurface 159
3 Antenna Performance Enhancement 160
3.1 Gain and Bandwidth Enhancement 160
3.2 Reconfigurable Antennas 161
3.3 Polarizer 162
4 Metascreen-based Antenna 164
4.1 Design of Source Antenna 164
4.2 Design of Metascreen-Loaded Antenna 166
5 Metafilm-based Antenna 169
5.1 Design of Source Antenna 170
5.2 Design of Metafilm-Loaded Antenna 171
6 Conclusion 174
References 174
10 Electromagnetic Bandgap Structures 176
1 Introduction 176
2 EBGs 177
3 Three-Dimensional (3D) EBG 179
4 Two-Dimensional (2D) EBG 180
4.1 Mushroom EBG 180
4.2 Uniplanar EBG 183
4.3 Spiral EBG 183
4.4 Comparison of Mushroom, Uniplanar and Spiral EBGs 184
5 One-Dimensional EBG 184
6 Applications of EBGs 185
6.1 Gain and Bandwidth Enhancement 185
6.2 Mutual Coupling Reduction 186
6.3 Biomedical Applications (SAR Reduction) 188
6.4 Other Applications 188
7 Conclusion 189
References 189
11 Survey on Dielectric Resonator and Substrate Integrated Waveguide-Based 5G MIMO Antenna with Different Mutual Coupling Reduction Techniques 191
1 Introduction 191
2 5G Communication 192
3 5G MIMO Antenna 194
4 Isolation in 5G MIMO Antenna 194
4.1 Defective Ground Structure 195
4.2 Decoupling Network 195
4.3 Parasitic Element 195
4.4 Neutralization of Line 195
4.5 Electromagnetic Band Gap Structure 196
4.6 Metamaterial Polarization-Rotator Wall 196
4.7 MetaSurface 196
5 Related Research Work 196
6 Conclusion 204
References 205

Erscheint lt. Verlag 8.2.2020
Reihe/Serie Materials Horizons: From Nature to Nanomaterials
Zusatzinfo XI, 199 p. 130 illus., 108 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Born Von Karman model • Dielectric Resonator Antenna • FDTD Materials Modeling • FEM Materials Modeling • Graphene Modeling • Green Function • metamaterials • multiscale modelling • Nano Material Modeling
ISBN-10 981-15-2267-7 / 9811522677
ISBN-13 978-981-15-2267-3 / 9789811522673
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A practical guide to probabilistic modeling

von Osvaldo Martin

eBook Download (2024)
Packt Publishing Limited (Verlag)
35,99
Discover tactics to decrease churn and expand revenue

von Peter Armaly; Jeff Mar

eBook Download (2024)
Packt Publishing Limited (Verlag)
25,19
Unleash citizen-driven innovation with the power of hackathons

von Love Dager; Carolina Emanuelson; Ann Molin; Mustafa Sherif …

eBook Download (2024)
Packt Publishing Limited (Verlag)
35,99