Impedance Source Inverters - Hongpeng Liu, Zichao Zhou, Yuhao Li, Wentao Wu, Jiabao Jiang, Enda Shi

Impedance Source Inverters (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
IX, 290 Seiten
Springer Singapore (Verlag)
978-981-15-2763-0 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources. 


Hongpeng Liu has authored more than 50 technical papers published in journals and conference proceedings, including 10 papers in IEEE Transactions and 20 technical papers on impedance source inverters. Holding 10 Chinese patents, his current research interests include photovoltaic generation, PWM converter/inverter systems, micro-grids, energy-saving technologies, and electrical system reliability technologies. Prof. Liu is a Member of the IEEE Power Electronics Society and serves as an Associate Editor of IEEE Access, IET Electric Power Applications, and the Journal of Power Electronics. 

Zichao Zhou's current research interests include photovoltaic generation and Y-source inverters, with a main focus on improving the performance of Y-source inverters and analysis of impedance source inverters. M.E. Zhou has authored 3 technical papers published in journals and conference proceedings, including 2 papers in IEEE Transactions and Zhou is studying for a doctorate at Aalborg University now.

Yuhao Li's current research interests include photovoltaic generation and impedance source inverters, with a main focus on improving the performance of impedance source inverters. M.E. Li has authored 3 technical papers published in journals and conference proceedings, including 2 papers in IEEE Transactions. 

Wentao Wu's current research interests include electrical system reliability analysis, with a main focus on improving the performance of Y-source inverters. M.E. Wu has authored 2 technical papers published in journals and conference proceedings. 

Jiabao Jiang's current research interests include electrical system reliability analysis and power converters, with a main focus on modified Y-source inverters. 

Enda Shi's current research interests include electrical system reliability analysis and power converters, with a main focus on modified Y-source inverters. 


This book focuses on impedance source inverters, discussing their classification, advantages, topologies, analysis methods, working mechanisms, improvements, reliability, and applications. It summarizes methods for suppressing DC-link voltage spikes and duty loss, which can pose a problem for researchers; and presents novel, efficient, steady state and transient analysis methods that are of significant practical value, along with specific calculation examples. Further, the book addresses the reliability of impedance source inverters, adopting a methodology from reliability engineering to do so. Given its scope, it offers a valuable resource for researchers, engineers, and graduate students in fields involving impedance source inverters and new energy sources. 

Contents 5
1 Research Status and Development 10
Abstract 10
1.1 Traditional Source Inverters 10
1.1.1 Energy Situation 10
1.1.2 Traditional Power Inverter Topologies 14
1.2 Impedance Source Inverters 19
1.3 Classification and Future Trends 24
1.3.1 Classification of Impedance Source Inverters 24
1.3.2 Future Trend of Impedance Source Inverters 28
1.4 Contents Outline 28
References 29
2 Z-Source Inverter and Control 37
Abstract 37
2.1 Voltage-Fed Z-Source Inverter 37
2.1.1 Structure and Equivalent Circuit 37
2.1.2 Circuit Analysis 39
2.1.3 Quasi-Z-Source Inverter 41
2.2 Modulation Methods 43
2.2.1 Simple Boost Pulse-Width Modulation 43
2.2.2 Maximum Boost Pulse-Width Modulation 47
2.2.3 Other Boost Pulse-Width Modulation 48
2.3 Closed-Loop Control of Shoot-Through Duty Ratio 49
2.3.1 Introduction 49
2.3.2 Single-Loop Methods 50
2.3.3 Dual-Loop Methods 51
2.3.4 Non-linear Control Methods 51
2.4 Current-Fed Z-Source Inverter and Control 51
2.4.1 Structure of Current-Fed Z-Source Inverter 51
2.4.2 Modes of Current-Fed Z-Source Inverter 52
2.4.3 Modulation of Current-Fed Z-Source Inverter 53
2.4.4 Closed-Loop Control of Current-Fed Z-Source Inverter 54
2.5 Summary 55
References 56
3 Developments of Impedance Source Inverters 58
Abstract 58
3.1 Introduction 58
3.2 Topology Improvements with Constant Boost Ratio 59
3.2.1 Z-Source Inverter 59
3.2.2 Improved Z-Source Inverters 60
3.2.2.1 Bidirectional Z-Source Inverter 60
3.2.2.2 High-Performance Improved Z-Source Inverters 60
3.2.2.3 Other Improved Z-Source Inverters 62
3.2.3 Neutral Point Z-Source Inverters 62
3.2.4 Reduced Leakage Current Z-Source Inverters 64
3.2.5 Quasi-Z-Source Inverters 65
3.2.6 Other Basic Z-Source Inverters 65
3.3 Topology Developments to Improve Boost Ratio 67
3.3.1 Switched Components Z-Source Inverters 67
3.3.2 Tapped Inductor Z-Source Inverters 68
3.3.3 Cascaded Quasi-Z-Source Inverters 69
3.3.4 Coupled Inductor Z-Source Inverters 70
3.4 Multilevel and Multiplex Topologies 70
3.4.1 Three-Level Z-Source Inverters 70
3.4.2 Five-Level Z-Source Inverters 71
3.4.3 Cascaded Multilevel Z-Source Inverters 71
3.4.4 Multiplex Z-Source Inverters 71
3.5 Parameter Optimization of Topologies 71
3.5.1 High-Frequency Transformer Isolated Z-Source Topologies 71
3.5.2 Inductor Z-Source Topologies 72
3.5.3 Extended Quasi-Y-Source Topologies 72
3.5.4 Low DC-Link Voltage Spikes Y-Source Topologies 72
3.6 Summary 73
References 74
4 Dual-Winding Impedance Source Inverters 79
Abstract 79
4.1 T-Source Inverter 79
4.2 Trans-Quasi-Z-Source Inverter 81
4.3 Improved Trans-Quasi-Z-Source Inverter 82
4.4 Transformer Quasi-Z-Source Inverter 84
4.5 Inductor–Capacitor–Capacitor–Transformer ZSI 84
4.6 ?-Source Inverter 85
4.7 Summary 86
References 88
5 Three-Winding Impedance Source Inverter 89
Abstract 89
5.1 Y-Source Inverter 89
5.2 Improved Y-Source Inverter 91
5.3 Extended Quasi-Y-Source Inverter 93
5.3.1 Startup Current Suppression 94
5.3.2 Operational States 95
5.3.3 Current Ratings and Core Size of Coupled Inductor 98
5.3.4 Component Stresses 102
5.3.5 Loss of ST Duty Ratio 103
5.3.6 DC-Link Voltage Spikes 106
5.3.7 Experimental Results 108
5.4 Modified Y-Source Inverter 112
5.5 Summary 122
References 122
6 Technology of DC-Link Voltage Spikes Suppression 124
Abstract 124
6.1 Introduction 124
6.2 Dual Diodes Capacitor–Diode Absorbing Circuits 125
6.2.1 Operational Modes 128
6.2.2 Current Analysis 130
6.2.3 Voltage Analysis 132
6.2.4 Switching Loss Analysis 136
6.2.5 Simulation and Experimental Results 139
6.2.6 Extension of Topologies Range 146
6.3 Single Diode Capacitor–Diode Clamping Circuits 147
6.4 Embedded Capacitor–Diode Absorbing Circuits 148
6.4.1 Operational States 149
6.4.2 Current Analysis 153
6.4.3 Voltage Analysis 157
6.4.4 Voltage and Current Stress Analysis 159
6.4.5 Simulation and Experimental Results 159
6.5 Cascaded Quasi-Z-Network Clamping Circuits 164
6.5.1 Operational Modes 165
6.5.2 Current Analysis 168
6.5.3 Voltage Analysis 172
6.5.4 Stresses and Lifetime 176
6.5.5 Extra Power Loss Analysis 177
6.5.6 Simulation and Experimental Results 179
6.6 Summary 185
References 186
7 Impedance Source Inverters Analysis 187
Abstract 187
7.1 Traditional Analysis of Voltage and Current Stresses 187
7.2 Novel Method to Analyze Voltage and Current Stresses 191
7.2.1 Current Analysis 191
7.2.2 Voltage Analysis 193
7.2.3 Method Applied to Other Converters 194
7.3 Transient Analysis Based on Impedance Source Inverter 196
7.3.1 Derivation of the Novel Model 197
7.3.1.1 Derivation of the Coupled Inductor Model 197
7.3.1.2 Derivation of the Whole Circuit Model 200
7.3.2 Switching Transient Analysis 203
7.3.3 Experimental Results 208
7.4 Summary 212
References 212
8 Reliability Research on Impedance Source Inverters 214
Abstract 214
8.1 Existing Reliability Analysis Methods 214
8.1.1 Basic Concept of Reliability and Evaluation Index 214
8.1.1.1 Basic Concept of Reliability Theory 214
8.1.1.2 Index of Reliability Evaluation 216
8.1.2 Method for Predicting Device Reliability 218
8.1.2.1 Method for Stress Analysis 218
8.1.2.2 Method for Physics of Failure 218
8.1.3 The Method for System Reliability Prediction 220
8.1.3.1 Reliability Block Diagram Method 220
8.1.3.2 Monte Carlo Method 224
8.2 Failure Mechanism of Power Devices 225
8.2.1 Structure of IGBT Module 226
8.2.1.1 Physical Structure of IGBT Module 226
8.2.1.2 Electrical Structure of IGBT Module 226
8.2.1.3 The Package Structure of IGBT Module 227
8.2.2 Failure Mechanism of IGBT Module 228
8.2.2.1 Package-Related Fault 229
8.2.2.2 Burning Failure 231
8.2.3 Structure of Capacitor 232
8.2.3.1 Classification of Capacitors 233
8.2.4 Failure Mechanism of Capacitor 236
8.3 Thermal Model of Power Devices 240
8.3.1 Thermal Model of IGBT 240
8.3.1.1 IGBT Power Loss Model 241
8.3.1.2 IGBT Thermal Model 245
8.3.2 Thermal Model of Capacitor 248
8.4 Life Prediction of Impedance Source Inverters 250
8.4.1 Lifetime Models of IGBT Module 250
8.4.1.1 Lifetime Model Based on Statistics 250
8.4.1.2 Lifetime Model Based on Physical Mechanism 251
8.4.2 Lifetime Models of DC-Link Capacitors 252
8.5 Reliability Analysis of Life Distribution 254
8.6 Summary 255
References 256
9 Application of Impedance Source Inverters 258
Abstract 258
9.1 Application of Power Decoupling 258
9.1.1 Power Decoupling Characteristics 258
9.1.2 Application of Impedance Source Inverter in Power Decoupling 262
9.2 Application in Photovoltaic Power Generation 268
9.2.1 Photovoltaic Power Characteristics 268
9.2.2 MPPT Control and System Control Methods 269
9.2.3 Example Demonstration 270
9.2.3.1 An Improved Y-Source Inverter PV System and Simulation Results 270
9.2.3.2 A Quasi-Z-Source Single-Phase Inverter PV System and Simulation Results 274
9.2.3.3 A Single-Phase Z-Source Inverter PV System and Simulation Results 277
9.3 Application in Wind Power Generation 279
9.3.1 Introduction 279
9.3.2 Z-Source Inverter 280
9.3.2.1 Z-Source Inverter for the Wind Power System 280
9.3.2.2 Simulation Results of a ZSI-Based Wind Power System 283
9.3.3 Quasi-Z-Source Inverter 285
9.3.4 Conclusion 287
9.4 Application on Motor Drive 287
9.4.1 Introduction 287
9.4.2 Z-Source Inverter-Based Permanent Magnet Brushless DC Motor Drive 288
9.4.3 Z-Source Inverter-Based Permanent Magnet Synchronous Motor 288
9.4.4 Z?Source Inverter-Based Switched Reluctance Motor 289
9.4.5 Modified Z-Source Inverter-Based Three-Phase Induction Motor Drive 289
9.4.6 Conclusion 291
References 291

Erscheint lt. Verlag 13.1.2020
Zusatzinfo IX, 290 p. 232 illus., 114 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Schlagworte Coupled Inductors Impedance Source Inverters • DC-link Voltage Spikes Reduction • DC-link Voltage Suppression Technology • Duty Cycle Loss Elimination • Duty Cycle Loss Suppression Technique • Impedance Source Inverters • Inverters Analysis Simplification
ISBN-10 981-15-2763-6 / 9811527636
ISBN-13 978-981-15-2763-0 / 9789811527630
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
25,19