Hands-On Machine Learning with TensorFlow.js (eBook)
296 Seiten
Packt Publishing (Verlag)
978-1-83882-787-8 (ISBN)
Get hands-on with the browser-based JavaScript library for training and deploying machine learning models effectively
Key Features
- Build, train and run machine learning models in the browser using TensorFlow.js
- Create smart web applications from scratch with the help of useful examples
- Use flexible and intuitive APIs from TensorFlow.js to understand how machine learning algorithms function
Book Description
TensorFlow.js is a framework that enables you to create performant machine learning (ML) applications that run smoothly in a web browser. With this book, you will learn how to use TensorFlow.js to implement various ML models through an example-based approach.
Starting with the basics, you'll understand how ML models can be built on the web. Moving on, you will get to grips with the TensorFlow.js ecosystem to develop applications more efficiently. The book will then guide you through implementing ML techniques and algorithms such as regression, clustering, fast Fourier transform (FFT), and dimensionality reduction. You will later cover the Bellman equation to solve Markov decision process (MDP) problems and understand how it is related to reinforcement learning. Finally, you will explore techniques for deploying ML-based web applications and training models with TensorFlow Core. Throughout this ML book, you'll discover useful tips and tricks that will build on your knowledge.
By the end of this book, you will be equipped with the skills you need to create your own web-based ML applications and fine-tune models to achieve high performance.
What you will learn
- Use the t-SNE algorithm in TensorFlow.js to reduce dimensions in an input dataset
- Deploy tfjs-converter to convert Keras models and load them into TensorFlow.js
- Apply the Bellman equation to solve MDP problems
- Use the k-means algorithm in TensorFlow.js to visualize prediction results
- Create tf.js packages with Parcel, Webpack, and Rollup to deploy web apps
- Implement tf.js backend frameworks to tune and accelerate app performance
Who this book is for
This book is for web developers who want to learn how to integrate machine learning techniques with web-based applications from scratch. This book will also appeal to data scientists, machine learning practitioners, and deep learning enthusiasts who are looking to perform accelerated, browser-based machine learning on Web using TensorFlow.js. Working knowledge of JavaScript programming language is all you need to get started.
Get hands-on with the browser-based JavaScript library for training and deploying machine learning models effectivelyKey FeaturesBuild, train and run machine learning models in the browser using TensorFlow.jsCreate smart web applications from scratch with the help of useful examplesUse flexible and intuitive APIs from TensorFlow.js to understand how machine learning algorithms functionBook DescriptionTensorFlow.js is a framework that enables you to create performant machine learning (ML) applications that run smoothly in a web browser. With this book, you will learn how to use TensorFlow.js to implement various ML models through an example-based approach.Starting with the basics, you'll understand how ML models can be built on the web. Moving on, you will get to grips with the TensorFlow.js ecosystem to develop applications more efficiently. The book will then guide you through implementing ML techniques and algorithms such as regression, clustering, fast Fourier transform (FFT), and dimensionality reduction. You will later cover the Bellman equation to solve Markov decision process (MDP) problems and understand how it is related to reinforcement learning. Finally, you will explore techniques for deploying ML-based web applications and training models with TensorFlow Core. Throughout this ML book, you'll discover useful tips and tricks that will build on your knowledge.By the end of this book, you will be equipped with the skills you need to create your own web-based ML applications and fine-tune models to achieve high performance.What you will learnUse the t-SNE algorithm in TensorFlow.js to reduce dimensions in an input datasetDeploy tfjs-converter to convert Keras models and load them into TensorFlow.jsApply the Bellman equation to solve MDP problemsUse the k-means algorithm in TensorFlow.js to visualize prediction resultsCreate tf.js packages with Parcel, Webpack, and Rollup to deploy web appsImplement tf.js backend frameworks to tune and accelerate app performanceWho this book is forThis book is for web developers who want to learn how to integrate machine learning techniques with web-based applications from scratch. This book will also appeal to data scientists, machine learning practitioners, and deep learning enthusiasts who are looking to perform accelerated, browser-based machine learning on Web using TensorFlow.js. Working knowledge of JavaScript programming language is all you need to get started.
Erscheint lt. Verlag | 27.11.2019 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Web / Internet |
Schlagworte | machine learning • TensorFlow.js |
ISBN-10 | 1-83882-787-0 / 1838827870 |
ISBN-13 | 978-1-83882-787-8 / 9781838827878 |
Haben Sie eine Frage zum Produkt? |
Größe: 27,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich