Hyperspectral Image Analysis -

Hyperspectral Image Analysis

Advances in Machine Learning and Signal Processing
Buch | Hardcover
VI, 466 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-38616-0 (ISBN)
160,49 inkl. MwSt

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas ofimage analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful. 


Dr. Saurabh Prasad is an Associate Professor at the Department of Electrical and Computer Engineering at the University of Houston, TX, USA. Dr. Jocelyn Chanussot is a Professor in the Signal and Images Department at Grenoble Institute of Technology, France.

1. Introduction.- 2. Machine Learning Methods for Spatial and Temporal Parameter Estimation.- 3. Deep Learning for Hyperspectral Image Analysis, Part I: Theory and Algorithms.- 4. Deep Learning for Hyperspectral Image Analysis, Part II: Applications to Remote Sensing and Biomedicine.- 5. Advances in Deep Learning for Hyperspectral Image Analysis - Addressing Challenges Arising in Practical Imaging Scenarios.- 6. Addressing the Inevitable Imprecision: Multiple Instance Learning for Hyperspectral Image Analysis.

Erscheinungsdatum
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Zusatzinfo VI, 466 p. 170 illus., 144 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 869 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Schlagworte Anomaly Detection • computational imaging • Deep learning • Hyperspectral Image Analysis • manifold learning • Remote Sensing • Remote Sensing/Photogrammetry • sparse representations • subspace learning • Target Recognition
ISBN-10 3-030-38616-3 / 3030386163
ISBN-13 978-3-030-38616-0 / 9783030386160
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95