Machine Learning for Asset Managers - Marcos M. López de Prado

Machine Learning for Asset Managers

Buch | Softcover
152 Seiten
2020
Cambridge University Press (Verlag)
978-1-108-79289-9 (ISBN)
21,20 inkl. MwSt
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to “learn” complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.

1. Introduction; 2. Denoising and detoning; 3. Distance metrics; 4. Optimal clustering; 5. Financial labels; 6. Feature importance analysis; 7. Portfolio construction; 8. Testing set overfitting.

Erscheinungsdatum
Reihe/Serie Elements in Quantitative Finance
Zusatzinfo Worked examples or Exercises; 4 Tables, black and white; 30 Line drawings, black and white
Verlagsort Cambridge
Sprache englisch
Maße 152 x 230 mm
Gewicht 250 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft Betriebswirtschaft / Management Finanzierung
ISBN-10 1-108-79289-8 / 1108792898
ISBN-13 978-1-108-79289-9 / 9781108792899
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich