Cyber-Physical Energy and Power Systems (eBook)
XVI, 216 Seiten
Springer Singapore (Verlag)
978-981-15-0062-6 (ISBN)
Yijia Cao received the undergraduate degree from Xi'an Jiaotong University, Xi'an, China, in 1988, and the M.Sc. and Ph.D. degrees from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 1991 and 1994, respectively. From 1994 to 2000, he was a Visiting Research Fellow and a Research Fellow with Loughborough University, Liverpool University, and the University of the West England, U.K. From 2000 to 2001, he was a Full Professor with HUST, and from 2001 to 2008, he was a Full Professor with Zhejiang University, China, where he was appointed as the Deputy Dean of the College of Electrical Engineering in 2005. He is currently a Full Professor and the Vice President of Hunan University, Changsha, China. Dr. Cao is an Associate Editor of IET Cyber-Physical Systems: Theory & Applications. His main research interests are smart grid dispatch, power system security and stability control, and the application of intelligent systems in power systems.
This book discusses recent advances in cyber-physical power systems (CPPS) in the modeling, analysis and applications of smart grid. It introduces a series of models, such as an analysis of interaction between the power grid and the communication network, differential protection in smart distribution systems, data flow for VLAN-based communication in substations, a co-simulation model for investigating the impacts of cyber-contingency and distributed control systems as well as the analytical techniques used in different parts of cyber physical energy systems. It also discusses methods of cyber-attack on power systems, particularly false data injection. The results presented are a comprehensive summary of the authors' original research conducted over a period of 5 years. The book is of interest to university researchers, R&D engineers and graduate students in power and energy systems.
Preface 5
Outlines 6
Acknowledgements 9
Contents 10
1 Introduction 16
1.1 Status Quo and Trends of the Fusion of Cyber and Power Systems 16
1.2 Simulation and Evaluation Methods and Its Application in CPEPS 18
1.2.1 Power, Communication, and Information System Simulation 19
1.2.2 Simulation Control 20
1.3 Interaction of CPEPS and Related Analysis Methods 21
1.3.1 Interaction Between Energy and Information Flows 21
1.3.2 Analysis Methods 22
1.4 Challenges of Power System Control and Protection in CPEPS 24
1.5 Challenges of Cyber Systems in CPEPS 25
1.5.1 Mass Data Processing and Cluster Analysis 25
1.5.2 Architecture of Communication Network 26
1.5.3 Information Transmission Technology 27
1.5.4 Security of CPEPS 27
1.6 Summary 28
References 28
2 Modeling and Analysis Techniques of Interdependent Network 31
2.1 Overview of Cascading Failure in Interdependent Network 31
2.2 Modeling for Interdependent Network 32
2.3 Model for Communication Network 35
2.3.1 Complex Network Background 35
2.3.2 Topological Models of Communication Network 36
2.3.3 Information Network Routing Strategy 39
2.4 Analysis of Blackout Caused by Interdependent Network 40
2.4.1 Cascading Failure Analysis Based on Interdependent Network 40
2.4.2 Dynamic Power Flow in Power System 41
2.4.3 Cascading Failure Simulation 43
2.5 Case Studies 44
2.6 Summary 48
References 48
3 Cascading Failure Analysis of Cyber-Physical Power System with Multiple Interdependency and Control Threshold 50
3.1 Introduction 50
3.2 Modeling of the Cascading Failure in CPEPS with Control Threshold 52
3.2.1 Cascading Failure with One-to-Multiple Interdependency 52
3.2.2 Cascading Failure with Control Threshold 54
3.3 Robustness Evaluation of CPEPS in Cascading Failure 55
3.4 Case Studies 59
3.4.1 Impacts of Different Interdependent Links 60
3.4.2 Impacts of Different Control Threshold 62
3.5 Summary 65
References 65
4 Impacts of EPON-Based Communication Networks on Differential Protection of Smart Distribution Networks 68
4.1 Overview of Differential Protection Algorithms 69
4.1.1 Principle of Current Differential Protection (CDP) 69
4.1.2 Principle of Directional Comparison Pilot Protection 70
4.1.3 Principle of Backup Differential Protection 71
4.2 Calculation Process of Differential Protection Based on EPON 72
4.2.1 Calculation Process 72
4.2.2 Long Distance Communication of EPON 72
4.2.3 Communication Delay 72
4.3 Impact Analysis of EPON on Differential Protection 74
4.3.1 Impact Paths of EPON on Differential Protection 74
4.3.2 Impact of Time Synchronization Error 74
4.3.3 Impact of Polling Period 78
4.4 Modeling of Physical and Communication System 78
4.5 Impact Analysis by Co-simulation 81
4.5.1 Case 1: Phase-to-Phase Short-Circuit Fault 81
4.5.2 Case 2: Phase-to-Ground High-Impedance Fault 83
4.6 Summary 84
References 85
5 Modeling and Simulation of Data Flow for VLAN-Based Substation Communication System 87
5.1 Introduction of VLAN Technology 87
5.2 Theoretical Models of Data Flow 89
5.2.1 Modeling for Cyclic Data Flow 89
5.2.2 Modeling for Stochastic Data Flow 91
5.2.3 Modeling for Burst Data Flow 92
5.3 Analysis of Data Flow in a Substation 94
5.3.1 Typical Structure for Substation System 94
5.3.2 Data Flow for Substation Communication System 95
5.4 Case Studies 99
5.4.1 Case I: Evaluation of VLAN Scheme 100
5.4.2 Case II: Impacts of System Fault on Network Performance 104
5.4.3 Case III: Comparison of Ring and Star Topologies 106
5.4.4 Case IV: Impacts of Ring Broken on Network Performance 108
5.5 Summary 112
References 112
6 Reliability Analysis of Cyber-Physical Systems in Substation 114
6.1 Interactions Between Cyber Layer and Physical Layer in Substation 114
6.1.1 Simplified Model of the Substation System 115
6.1.2 Interaction Framework of the Cyber-Physical Substation 116
6.2 Model Quantifying the Interactions 117
6.3 Reliability Analysis of the Cyber-Physical Substation 119
6.3.1 Indices of Cyber-Physical Substation Reliability 119
6.3.2 Reliability Simulation Method 119
6.4 Case Studies 120
6.4.1 CPIM of the Reliability the Cyber-Physical Substation 120
6.4.2 Reliability Analysis Results 126
6.4.3 Effects of Delay Rates 126
6.5 Summary 127
References 128
7 Self-sustainable Community of Electricity Prosumers in Distribution System 129
7.1 Self-sustainable Community for Electricity Prosumer 129
7.1.1 Characteristics of Self-sustainable Community for Electricity Prosumer 129
7.2 Simulation Framework for Self-sustainable Prosumer-Based Energy Community 131
7.2.1 Framework of Self-sustainable Community Simulation 131
7.2.2 Multi-agents Simulation Structure for Distribution Network 133
7.3 Modeling for Micro-player 134
7.3.1 Modeling for Prosumer’s Physical Behavior 134
7.3.2 Modeling for Prosumer’s Social Behavior 136
7.3.3 Modeling for Prosumer’s Self-organized Trade 137
7.3.4 Modeling for Participation to Local Community Market 138
7.4 Modeling for Macro-player 139
7.5 Case Studies 141
7.5.1 Impacts of Different Balancing Premium Schemes 142
7.5.2 The Impacts of Prosumer’s Inherent Characteristics 145
7.6 Summary 146
References 147
8 Simplified Co-simulation Model for Investigating Impacts of Cyber-Contingency 149
8.1 Overview of Simulation Method 149
8.2 Impacts of Cyber Contingencies 151
8.2.1 Classification of Cyber Contingencies 152
8.2.2 End-to-End Features of Cyber Contingencies 153
8.3 Information Flow-Based Co-simulation Model 154
8.3.1 Power, Decision-Making and Sensing and Communication Layers’ Simulation 154
8.3.2 Time Synchronization and Data Exchange of Simulation 158
8.3.3 Assessment of Cyber Contingencies 159
8.4 Case Studies 160
8.4.1 Verifying Simulation Method of Transmitted Data 161
8.4.2 Cyber-Contingency Assessment 166
8.5 Summary 169
References 170
9 JADE-Based Information Physical System Co-simulation Environment for Smart Distribution Networks 172
9.1 Distributed Control Joint Simulation Environment for Distribution Network 173
9.1.1 Architecture 173
9.1.2 Time Synchronization Mechanism 174
9.1.3 Processing of Event Chain 175
9.2 Description of the Design Methods in Distributed Controllers 176
9.2.1 Simulation Environment of Distributed Controller 176
9.2.2 Implementation of Controller 177
9.2.3 Negotiation Between Controllers 178
9.3 Case Studies 179
9.3.1 A Distributed Protection Algorithm Based on Local Outlier Factor 179
9.3.2 Description of Co-simulation 180
9.3.3 Performance Validation 181
9.4 Summary 184
References 184
10 Local False Data Injection Attacks with Incomplete Network Information 186
10.1 False Data Injection for State Estimation 186
10.1.1 State Estimation of Power System 187
10.1.2 Complex Network Background 188
10.2 Modeling of Local Data Attacks 190
10.2.1 Related Work 190
10.2.2 New Modeling of False Data Injection Attacks 191
10.3 Impacts of Network Connectivity 195
10.3.1 Disconnection Case 1 196
10.3.2 Disconnection Case 2 196
10.3.3 Disconnection Case 3 197
10.4 Feasibility of Attack Vectors 197
10.5 Case Studies 201
10.6 Summary 207
References 207
11 Optimal Attack Strategy on Power System 209
11.1 Definitions of Terms 209
11.2 Modeling of Attacking Regions 210
11.2.1 Definition of LR Attacks 210
11.3 Optimal Attacking Region 213
11.3.1 Algorithm of Determining a Feasible Attacking 215
11.3.2 Expansion Strategy 216
11.3.3 Determine Attack Measurements 216
11.4 Case Studies 217
11.4.1 Case 1: The Attacker Intends to Attack Load Bus 1 218
11.4.2 Case 2: The Attacker Intends to Attack Load Bus 12 220
11.5 Summary 223
References 223
Erscheint lt. Verlag | 19.11.2019 |
---|---|
Zusatzinfo | XVI, 216 p. 106 illus., 86 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Naturwissenschaften | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
Schlagworte | Communication Networks • Co-Simulation • Cyber-Physical Energy Systems • distributed control system • distribution network • interdependent network • Smart Grid • substations data flow |
ISBN-10 | 981-15-0062-2 / 9811500622 |
ISBN-13 | 978-981-15-0062-6 / 9789811500626 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich