Hodge Ideals
Seiten
2020
American Mathematical Society (Verlag)
978-1-4704-3781-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-3781-7 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Uses methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal.
The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
Mircea Mustata, University of Michigan, Ann Arbor. Mihnea Popa, Northwestern University, Evanston, IL.
Introduction
Preliminaries
Saito's Hodge filtration and Hodge modules
Birational definition of Hodge ideals
Basic properties of Hodge ideals
Local study of Hodge ideals
Vanishing theorems
Vanishing on $/mathbf{P} ^n$ and abelian varieties, with applications
Appendix: Higher direct images of forms with log poles
References.
Erscheinungsdatum | 31.12.2019 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 185 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-3781-3 / 1470437813 |
ISBN-13 | 978-1-4704-3781-7 / 9781470437817 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €