Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering - G. Hariharan

Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering (eBook)

(Autor)

eBook Download: PDF
2019 | 1st ed. 2019
XIX, 177 Seiten
Springer Singapore (Verlag)
978-981-329-960-3 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book focuses on how to implement discrete wavelet transform methods in order to solve problems of reaction-diffusion equations and fractional-order differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by wavelet methods for both classical and fractional-order differential equations; provides comprehensive information on the conceptual basis of wavelet theory and its applications; and strikes a sensible balance between mathematical rigour and the practical applications of wavelet theory. 

The book is divided into 11 chapters, the first three of which are devoted to the mathematical foundations and basics of wavelet theory. The remaining chapters provide wavelet-based numerical methods for linear, nonlinear, and fractional reaction-diffusion problems. Given its scope and format, the book is ideally suited as a text for undergraduate and graduate students of mathematics and engineering.


G. Hariharan has been a Senior Assistant Professor at the Department of Mathematics, SASTRA University, Thanjavur, Tamil Nadu, India, since 2003. He previously served as a lecturer at Adhiparasakthi Engineering College, Melmaruvathur, Tamil Nadu. Dr Hariharan received his MSc and PhD degrees in Mathematics from Bharathidasan University, Trichy, and SASTRA University, in 1999 and 2010, respectively. He has over 20 years of teaching experience at the undergraduate and graduate levels at several educational institutions and engineering institutes, as well as 16 years of research experience in applied mathematics. He is a life member of the Indian Society for Technical Education (ISTE), Ramanujan Mathematical Society (RMS), International Association of Engineers (IAENG), and the Indian Society of Structural Engineers (ISSE).
 
Dr Hariharan has served as the Principal Investigator of projects for e.g. the DRDO-NRB (Naval Research Board) and Government of India, and has contributed research papers on several interdisciplinary topics such as wavelet methods, mathematical modelling, fractional calculus, enzyme kinetics, ship dynamics, and population dynamics. He has published over 85 peer-reviewed research papers on differential equations and applications in various leading international journals, including: Applied Mathematics and Computation, Electrochimica Acta, Ocean Engineering, Journal of Computational and Nonlinear Dynamics, MATCH-Communications in Mathematical and Computer Chemistry, Aerospace and Space Sciences, and the Arabian Journal for Science and Engineering. In addition, Dr Hariharan serves on the editorial boards of several prominent journals, including: Communications in Numerical Analysis, International Journal of Modern Mathematical Sciences, International Journal of Computer Applications, and International Journal of Bioinformatics.

The book focuses on how to implement discrete wavelet transform methods in order to solve problems of reaction-diffusion equations and fractional-order differential equations that arise when modelling real physical phenomena. It explores the analytical and numerical approximate solutions obtained by wavelet methods for both classical and fractional-order differential equations; provides comprehensive information on the conceptual basis of wavelet theory and its applications; and strikes a sensible balance between mathematical rigour and the practical applications of wavelet theory. The book is divided into 11 chapters, the first three of which are devoted to the mathematical foundations and basics of wavelet theory. The remaining chapters provide wavelet-based numerical methods for linear, nonlinear, and fractional reaction-diffusion problems. Given its scope and format, the book is ideally suited as a text for undergraduate and graduate students ofmathematics and engineering.
Erscheint lt. Verlag 17.9.2019
Reihe/Serie Forum for Interdisciplinary Mathematics
Forum for Interdisciplinary Mathematics
Zusatzinfo XIX, 177 p. 27 illus., 25 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Chebyshev Wavelets • Differential Equations • Haar Wavelets • Legendre Wavelets • Operational Matrices • Ordinary differential equations • Partial differential equations
ISBN-10 981-329-960-6 / 9813299606
ISBN-13 978-981-329-960-3 / 9789813299603
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich