5G System Design (eBook)

An End to End Perspective
eBook Download: PDF
2019 | 1st ed. 2020
XXIII, 393 Seiten
Springer International Publishing (Verlag)
978-3-030-22236-9 (ISBN)

Lese- und Medienproben

5G System Design - Wan Lei, Anthony C.K. Soong, Liu Jianghua, Wu Yong, Brian Classon, Weimin Xiao, David Mazzarese, Zhao Yang, Tony Saboorian
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a detailed pedagogical description of the 5G commercial wireless communication system design, from an end to end perspective. It compares and contrasts NR with LTE, and  gives a concise and highly accessible description of the key technologies in the 5G physical layer, radio access network layer protocols and procedures. This book also illustrates how the 5G core and EPC is integrated into the radio access network, how virtualization and edge computer fundamentally change the way users interact with the network, as well as 5G spectrum issues.

This book is structured into six chapters. The first chapter reviews the use cases, requirements, and standardization organization and activities for 5G. These are 5G requirements and not NR specifically, as technology that meets the requirements, may be submitted to the ITU as 5G technology. This includes a set of Radio Access Technologies (RATs), consisting of NR and LTE; with each RAT meeting different aspects of the requirements. The second chapter describes the air interface of NR and LTE side by side. The basic aspects of LTE that NR builds upon are first described, followed by sections on the NR specific technologies, such as carrier/channel, spectrum/duplexing (including SUL), LTE/NR co-existence and new physical layer technologies (including waveform, Polar/LDPC codes, MIMO, and URLLC/mMTC). In all cases the enhancements made relative to LTE are made apparent. 

The third chapter contains descriptions of NR procedures (IAM/Beam Management/Power control/HARQ), protocols (CP/UP/mobility, including grant-free), and RAN architecture. The fourth chapter includes a detailed discussion related to end-to-end system architecture, and the 5G Core (5GC), network slicing, service continuity, relation to EPC, network virtualization, and edge computing. The fifth and major chapter describes the ITU submission and how NR and LTE meet the 5G requirements in significant detail, from the rapporteur responsible for leading the preparation and evaluation, as well as some field trial results.

Engineers, computer scientists and professionals with a passing knowledge of 4G LTE and a comprehensive understanding of the end to end 5G commercial wireless system will find this book to be a valuable asset. Advanced-level students and researchers studying and working in communication engineering, who want to gain an understanding of the 5G system (as well as methodologies to evaluate features and technologies intended to supplement 5G) will also find this book to be a valuable resource.


Wan Lei is a Huawei fellow and currently head of Wireless Standard, Huawei Tech. Co. Ltd. She led the next generation wireless research and 3GPP 4G&5G standardization work in Huawei since 2008. Before then she was a principle engineer in Ericsson Research since 2001. Her main focus areas are network topology and air-interface evolution. She is known as the expert on network topology, system-level evaluation methodology and FDD/TDD convergence in the industry. She is the initiator of 4.5G and 5G DL/UL decoupling with LTE coexistence and one of the main contributors to 3GPP 5G standardization. In the past, she led TDD/FDD frame structure merging, CoMP, LTE-Hi (3GPP R12 small cell enhancement), LTE-V2X and U-LTE (unlicensed LTE) research and standardization. She is also the inventor of the physical layer MI quality model that is widely used in the system level simulation of telecommunication systems, such a model was adopted by 3GPP, 3GPP2, WiMAX as the link to system interface for system evaluation. She has a long experience in the wireless communication industry, with the background of WCDMA, TD-SCDMA, WiMAX, LTE and LTE-Advanced. Her research interest covers spectrum and regulation, duplex evolution, network topology evolution, air interface design specifically for traffic adaptive and interference coordination solution, evaluation methodology and autonomous driving.

Anthony C. K. Soong received the Ph.D. degree in electrical and computer engineering from the University of Alberta. He is a Fellow of the IEEE and currently the Chief Scientist for Wireless Research and Standards, as well as, Vice President for US Region of 3GPP Account Department at Huawei Technologies Co. Ltd, in the US. He currently serves on the Engineering College Industrial Advisory Board of The University of North Texas. He served as Secretary and the founding board member of OPNFV (2014-2016), the chair for 3GPP2 TSG-C NTAH (the next generation radio access network technology development group) from 2007-2009 and vice chair for 3GPP2 TSG-C WG3 (the physical layer development group for CDMA 2000) from 2006-2011. Prior to joining Huawei, he was with the systems group for Ericsson and Qualcomm. His research group is actively engaged in the research, development and standardization of the next generation cellular system. His research interests are in statistical signal processing, robust statistics, wireless communications, spread spectrum techniques, multicarrier signaling, multiple antenna techniques, network virtualization, SDN and physiological signal processing. He has published more than 100 scientific papers and has more than 100 patents granted or pending. He received the 2017 IEEE Vehicular Technology Society James R. Evans Avant Garde Award, the 2013 IEEE Signal Processing Society Best Paper Award and the 2005 award of merit for his contribution to 3GPP2 and cdma2000 development. He is the Industrial Chair for the 2019 Fall IEEE Vehicular Technology Conference (VTC), Industrial Co-Chair for 2019 Spring IEEE VTC, has served on the advisory board of 2014 IEEE Communication Theory Workshop, Steering Committee of IEEE Int. Workshop on HetSNet and on the technical program committee, as well as, chaired at numerous major conferences in the area of communications engineering. He has acted as guest editor for the IEEE Communications Magazine and IEEE Journal on Selected Areas in Communications.

Liu Jianghua received his M.S. degree in telecommunication and information systems from Beijing University of Posts and Telecommunications in 2005, and then joined Huawei Technologies working until now. He is currently a technical expert of wireless research and leading the LTE/NR RAN research team in Huawei. Since 2005, he has been working for the research of LTE/NR, and participated in the related standardization in 3GPP. He contributed several hundred contributions and is the inventor of more than 100 patents. His main research areas include MIMO, CA, channel modeling, Multi-user superposition transmission, flexible duplex, IoT, etc. From 2014 to 2017, he led the project of research and standardization of 4.5G in Huawei, and actively participate the promotion of 4.5G industrialization.

Wu Yong received his PhD degree in 2008 from the department of electrical engineering of Tsinghua University. Then he joined Huawei and participated in the 4G self evaluation. He is now the chair of SIG-EVAL of CJK (China-Japan-Korea) IMT working group, and the chair of SWG Circular of ITU-R WP 5D. He also served as the 3GPP Rapporteur for the study on self-evaluation towards IMT-2020 submission. He was deeply involved in 5G (IMT-2020) vision development, and 5G evaluation criteria development. He also played a key role in collaborating industry for 3GPP's 5G evaluation and submission.

Brian Classon graduated from the University of Maryland at College Park and the University of Illinois at Urbana Champaign and has focused on communications engineering throughout his career. He is a Fellow of the IEEE and a senior expert for standards at Huawei. He worked 13 years with Motorola Labs, researching topics such as channel coding, AMC/HARQ, frame structure, control channels, reference signals, URLLC, and bandwidth-reduced low-complexity devices. After serving as the Motorola Labs global lead for LTE in RAN1, Brian took the role as Huawei RAN1 head of delegation and chief delegate. He has been with Huawei since 2008, directing the submission of many thousands of contributions and accumulating millions of flight miles in that time. Since 2011, Huawei has been the top contributor for submitted and agreed contributions in RAN1. Over his career, Brian has impacted many commercial systems (EDGE, 1xEV-DO/DV, WiMAX, HSPA, LTE, NR) through innovative research, with more than 175 US patents, and academic publication, as well as active attendance and participation in industry standards (3GPP2, 802.16, and 3GPP). Brian contributed to the initial HSPA proposal in 2000, and has attended RAN1 continuously since the start of LTE. He has chaired sessions in RAN1 on multiple topics, including completing the initial release of NB-IoT in April 2016. Brian is the current editor for the LTE core specification 3GPP TS 36.212 and the recipient of the 2014 3GPP excellence award.

Weimin Xiao graduated from Huazhong University of Science and Technology (Wuhan, China), Tsinghua University (Beijing, China), and Northwestern University (Evanston, IL). Before joining Huawei in 2009, he worked for Motorola developing technologies and standards of EV-DV, HSPA, and LTE. He currently leads the US radio access research and standards team focusing on technologies for massive MIMO, dense networks, advanced carrier design and resource optimization, high frequency communications, and connect cars, and their standardization in 5G and beyond. He is an experienced 3GPP delegate in LTE and NR standardization work and is the main inventor of uplink power control design. He received the IEEE Communication Society & Information Theory Society Joint Paper Award in 2002. He has more than 100 patents for power control, MIMO and feedback, cooperative communications, interference control, radio resource optimization, and other areas.

David Mazzarese received the engineer degree from ENSEA, France, in 1998, and Ph.D. in electrical engineering from the University of Alberta, Canada, in 2005. He was a senior engineer in the Wireless Standards and Research Group of Samsung Electronics from 2005 to 2010, working as standard delegate for IEEE 802.16m and 802.22. He has been with Huawei Technologies since April 2010 as a senior expert representing Huawei in 3GPP RAN1 working group, and head of delegation for Huawei in 3GPP RAN TSG since 2013.

Zhao Yang received her Master degree in 2005 from the Southeast University. She joined Huawei in 2006 and continued to participate in 3GPP activities since then. She has been 3GPP GERAN WG2 chair and has led the NB-IoT technology standardization, and she is deeply involved in the 5G standardization and now is the prime delegate for Huawei RAN2.

Tony Saboorian is a Director in Wireless Research and Standards in Huawei and leads the Huawei Wireless delegations in 3GPP TSG-SA. He has extensive experience in telecommunication research and standardization with emphasis on Wireless Networks, SDN and NFV.  Mr. Saboorian has worked on various design, planning, architecture and standards projects in Siemens, Nortel Networks, and Huawei. He has contributed to number of Standards, held leadership positions in SDOs, and is recognized for his contributions to the industry. He received his master's degree in Electrical and Computer Engineering from Florida Atlantic University.

Preface 6
Acknowledgement 9
Acronyms 10
Contents 15
Contributors 19
Chapter 1: From 4G to 5G: Use Cases and Requirements 20
1.1 Introduction 20
1.2 Global 5G Development 22
1.2.1 ITU-R Development on 5G/IMT-2020 22
1.2.2 Regional Development/Promotion on 5G 24
1.2.2.1 NGMN 25
1.2.2.2 IMT-2020 (5G) Promotion Group 25
1.2.2.3 Europe: 5G PPP 25
1.2.2.4 Korea: 5G Forum 26
1.2.2.5 Japan: 5GMF 26
1.2.2.6 North and South America: 5G Americas 26
1.2.2.7 Global 5G Event 27
1.2.3 Standard Development 27
1.3 Use Case Extensions and Requirements 28
1.3.1 5G Usage Cases and Service Requirement 28
1.3.1.1 Extended Usage Scenarios: From eMBB to IoT (mMTC and URLLC) 29
1.3.1.2 Survey of Diverse Services Across 5G Usage Scenarios and the Diverse Requirements 30
1.3.1.2.1 eMBB Services 31
UHD/3D Video Streaming 31
Video Sharing 31
AR/VR Delivering to User 31
1.3.1.2.2 mMTC Services 32
1.3.1.2.3 URLLC Services 34
1.3.1.3 Supporting Requirements and Operational Requirements to Enable 5G Service Deployment 35
1.3.1.3.1 eMBB 35
Edge User Experienced Data Rate 35
Area Traffic Capacity 36
Spectral Efficiency 36
Energy Efficiency 37
1.3.1.3.2 mMTC 37
1.3.1.3.3 URLLC 38
Availability 38
1.3.1.3.4 General 38
Coverage 38
1.3.2 5G Key Capabilities and Technical Performance Requirements 38
1.3.2.1 Key Capabilities for 5G 39
1.3.2.1.1 eMBB 39
User Experienced Data Rate 39
Area Traffic Capacity 40
Mobility 40
Peak Data Rate 40
Energy Efficiency 40
Spectral Efficiency 41
1.3.2.1.2 mMTC 41
Connection Density 41
Network Energy Efficiency 42
Operational Lifetime 42
1.3.2.1.3 URLLC 42
Latency 42
Mobility 42
Reliability 42
Resilience 42
1.3.2.1.4 Other Capabilities 43
Spectrum and Bandwidth Flexibility 43
Security and Privacy 43
1.3.2.2 Technical Performance Requirements for 5G 43
1.3.3 Summary on 5G Requirements 43
1.4 Standard Organization and 5G Activities 45
1.4.1 ITU-R Procedure/Process of IMT-2020 Submission 46
1.4.1.1 Stage 1: IMT-2020 Vision Development (2012–2015) 46
1.4.1.2 Stage 2: IMT-2020 Technical Performance and Evaluation Criteria Development (2015–2017) 46
1.4.1.3 Stage 3: IMT-2020 Submission, Evaluation, and Specification Development (2016–2020) 47
1.4.2 3GPP Development Towards ITU-R Submission 48
1.4.3 Independent Evaluation Groups to Assist ITU-R Endorse IMT-2020 Specification 50
1.5 Summary 50
References 51
Chapter 2: 5G Fundamental Air Interface Design 53
2.1 LTE Air Interface Overview 53
2.1.1 LTE Frame Structure 54
2.1.2 Physical Layer Channels 55
2.1.2.1 Multiple-Access Scheme 56
2.1.2.2 System Bandwidth 58
2.1.2.3 Numerology 59
2.1.2.4 Physical Channel Definition 61
2.1.3 Reference Signal 62
2.1.3.1 Downlink Reference Signals 62
2.1.3.1.1 Cell-Specific Reference Signal 62
2.1.3.1.2 UE-Specific Reference Signal 65
2.1.3.1.3 CSI Reference Signal 67
2.1.3.1.4 Discovery Signal 73
2.1.3.1.5 Other Downlink Reference Signals 73
2.1.3.2 Uplink Reference Signals 73
2.1.3.2.1 Uplink Demodulation Reference Signal 74
2.1.3.2.2 Uplink Sounding Reference Signal (SRS) 77
SRS Transmission in Time Domain 78
SRS Transmission in Frequency Domain 79
Aperiodic SRS 81
2.1.4 Downlink Transmission 81
2.1.4.1 PBCH 81
2.1.4.2 Control Channel 83
2.1.4.2.1 PCFICH 84
2.1.4.2.2 PDCCH 84
2.1.4.2.3 PHICH 87
2.1.4.3 PDSCH 89
2.1.4.4 Modulation Coding Scheme (MCS) 91
2.1.5 Uplink Transmission 92
2.1.5.1 PUCCH 92
2.1.5.1.1 PUCCH Formats 1/1a/1b 92
2.1.5.1.2 PUCCH Format 2/2a/2b 94
2.1.5.1.3 PUCCH Format 3 95
2.1.5.1.4 PUCCH Format 4/Format 5 96
2.1.5.2 PUSCH 97
2.1.5.3 Modulation 99
2.1.6 HARQ Timing 99
2.1.7 Carrier Aggregation (CA) and Band Combinations 101
2.1.8 Initial Access and Mobility Procedures 102
2.2 5G-NR Design of Carrier and Channels 106
2.2.1 Numerology for the Carrier 106
2.2.2 Frame Structure 108
2.2.2.1 Cell-Specific Higher Layer Configuration 109
2.2.2.2 UE-Specific Higher Layer Configuration 110
2.2.2.3 Group Common PDCCH 111
2.2.2.4 DL/UL Dynamic Scheduling 111
2.2.3 Physical Layer Channels 112
2.2.3.1 Physical Broadcast Channel (PBCH) 112
2.2.3.2 Physical Shared Data Channel (PDSCH) 115
2.2.3.3 Physical Downlink Control Channel (PDCCH) 116
2.2.3.4 Physical Uplink Shared Data Channel (PUSCH) 119
2.2.3.5 Physical Uplink Control Channel (PUCCH) 120
2.2.3.5.1 PUCCH Format 0 120
2.2.3.5.2 PUCCH Format 1 121
2.2.3.5.3 PUCCH Format 2 121
2.2.3.5.4 PUCCH Format 3 and 4 122
2.2.4 Physical Layer (PHY) Reference Signals 122
2.2.4.1 Reference Signal Design Framework and Considerations [42] 123
2.2.4.2 Demodulation Reference Signal 126
2.2.4.2.1 Overall Design of NR DM-RS 126
2.2.4.2.2 DM-RS Type-1 Configuration 127
2.2.4.2.3 DM-RS Type-2 Configuration 128
2.2.4.3 CSI-RS 129
2.2.4.3.1 General Design of CSI-RS 130
2.2.4.3.2 CSI-RS for CSI Acquisition 132
2.2.4.3.3 CSI-RS for Beam management 133
2.2.4.3.4 CSI-RS for Time and Frequency Tracking 133
2.2.4.3.5 CSI-RS for Mobility Measurement 134
2.2.4.4 Sounding Reference Signal 135
2.2.4.4.1 General Design of SRS 135
2.2.4.4.2 SRS for DL CSI Acquisition 136
SRS Antenna Switching 137
SRS Carrier Switching 137
2.2.4.4.3 SRS for Codebook and Non-codebook-Based Uplink MIMO 138
2.2.4.4.4 SRS for UL Beam Management 138
2.2.4.5 Phase Tracking Reference Signal 138
2.2.4.5.1 PT-RS for PDSCH 139
2.2.4.5.2 PT-RS for PUSCH of CP-OFDM 139
2.2.4.5.3 PT-RS for PUSCH of DFT-s-OFDM 140
2.2.4.6 Quasi-co-Location and Transmission Configuration Indicator 141
2.3 5G-NR Spectrum and Band Definition 142
2.3.1 5G Spectrum and Duplexing 142
2.3.1.1 IMT-2020 Candidate Spectrum 142
2.3.1.1.1 C-Band (3,300–4,200 and 4,400–5,000 MHz) 144
2.3.1.1.2 Mm-Wave Bands 144
2.3.1.1.3 Sub-GHz Frequency Bands for 5G 145
2.3.1.2 5G Duplexing Mechanisms 147
2.3.1.2.1 5G Candidate Band Types and Duplex Modes 147
2.3.1.2.2 Flexible Duplex: Convergence of FDD and TDD 148
Joint Operation of FDD and TDD 148
Synchronization for TDD Band 149
Dynamic TDD and Flexible Duplex 155
2.3.2 3GPP 5G-NR Band Definition 159
2.3.2.1 3GPP Rel.15 5G-NR Band Definition 159
2.3.2.2 3GPP 5G-NR Band Combination 161
2.3.2.2.1 5G-NR Band Combination Mechanisms 161
2.3.2.2.2 5G Band Combination Definition 163
2.3.2.2.3 Multi-Band Coexistence Requirements and Solutions: Intermodulation and Harmonics 163
Intermodulation Avoidance with Single UL Transmission 166
Harmonics Distortion Avoidance by Cross-Band Scheduling Coordination 168
2.4 4G/5G Spectrum Sharing (aka LTE/NR Coexistence) 169
2.4.1 Motivation and Benefit 169
2.4.1.1 NR Coverage on New Spectrum 170
2.4.1.1.1 Link Budget 170
2.4.1.1.2 UL/DL Assignment Impact on NR Coverage 172
2.4.1.1.3 5G-NR Deployment Challenges Due to the Coverage 172
2.4.1.2 UL/DL Decoupling Enabled by 4G/5G UL Spectrum Sharing 174
2.4.1.3 Benefits of 4G/5G Uplink Spectrum Sharing 175
2.4.1.3.1 Higher Spectrum Utilization Efficiency 175
2.4.1.3.2 Feedback Latency and Efficiency 176
2.4.1.3.3 Seamless Coverage, Deployment Investment, and Mobility 177
2.4.1.3.4 Unified Network Configuration for Various Traffic Types 178
2.4.1.4 Summary of LTE/NR Spectrum Sharing Scenarios 179
2.4.2 LTE/NR Spectrum Sharing: Network Deployment Scenarios 179
2.4.2.1 LTE/NR UL Sharing for NR Standalone Deployment 182
2.4.2.2 LTE/NR UL Sharing for Non-standalone NR Deployment, from Network and UE Perspective 182
2.4.2.3 LTE/NR Sharing in TDD Band 184
2.4.3 LTE/NR Spectrum Sharing: Requirements for Highly Efficient Sharing 184
2.4.3.1 Subcarrier Alignment for LTE/NR Spectrum Sharing 184
2.4.3.2 PRB Alignment for LTE/NR Spectrum Sharing 187
2.4.3.3 Channel Raster for the NR-SUL Band 193
2.4.3.4 Synchronization and Timing for LTE/NR UL Sharing 194
2.4.3.4.1 Synchronization Requirements Between LTE UL and NR SUL Cells 194
2.4.3.4.2 Timing Advance Mechanisms for LTE/NR UL Sharing 195
2.4.3.4.3 NSA LTE/NR UL Sharing TDM Configuration for HARQ Timing 197
2.4.4 NR SUL Band Combinations: Uplink Carrier Selection and Switching 198
2.4.4.1 Single-Cell Concept 198
2.4.4.2 UL Carrier Selection and Switch 198
2.4.4.2.1 Idle Mode UL Selection: Initial Access with PRACH 199
2.4.4.2.2 Connected Mode UL Selection: PUSCH/PUCCH Scheduling 201
2.4.4.3 SRS Switching 203
2.4.4.4 Power Control 204
2.4.5 4G/5G DL Spectrum Sharing Design 206
2.4.5.1 Rate Matching Around CRS 206
2.4.5.2 MBSFN Type Sharing 207
2.4.5.3 Mini-Slot Scheduling 207
2.4.5.4 SS SCS Definition for Coexisting Bands 208
2.5 5G-NR New Physical Layer Technologies 209
2.5.1 Waveform and Multiple Access 209
2.5.2 Channel Coding 213
2.5.2.1 LDPC 214
2.5.2.2 Polar Code 216
2.5.3 MIMO Design 218
2.5.3.1 DM-RS-Based MIMO Transmission 219
2.5.3.1.1 Codeword to Layer Mapping 219
2.5.3.1.2 PRB Bundling 220
2.5.3.1.3 DCI for MU-MIMO 220
2.5.3.2 CSI Acquisition 222
2.5.3.2.1 Framework for Configuration and Signaling of CSI Acquisition 222
2.5.3.2.2 Measurement for CSI Acquisition 224
2.5.3.2.3 Feedback Report and Calculation 225
2.5.3.2.4 Codebooks for PMI Report 227
2.5.3.3 Uplink MIMO 227
2.5.3.3.1 Codebook-Based Uplink MIMO 227
2.5.3.3.2 Non-codebook-Based Uplink MIMO 228
2.5.4 5G-NR Unified Air Interface Design for eMBB and URLLC 229
2.5.5 mMTC 230
2.5.5.1 NB-IoT 231
2.5.5.2 eMTC 234
2.5.5.3 NR mMTC 235
2.6 Summary 236
References 238
Chapter 3: 5G Procedure, RAN Architecture, and Protocol 244
3.1 5G-NR New Procedures 244
3.1.1 Initial Access and Mobility (IAM) 244
3.1.2 Beam Management 248
3.1.2.1 Downlink Beam Management 248
3.1.2.2 Beam Failure Recovery 249
3.1.2.3 Uplink Beam Management 249
3.1.3 Power Control 250
3.1.3.1 Fractional Power Control Design 250
3.1.3.2 NR Uplink Power Control Design Requirements and Framework 252
3.1.4 HARQ 253
3.2 RAN Architecture Evolution and Protocol 255
3.2.1 Overall Architecture 255
3.2.1.1 RAN Architecture Overview 255
3.2.1.2 RAN Architecture Options 257
3.2.1.3 CU-DU Split 258
3.2.1.4 RAN Protocol and Stack 258
3.2.1.4.1 NR Standalone Network Protocol Architecture 258
3.2.1.4.1.1 Control Plane 259
3.2.1.4.1.2 User Plane 260
MAC Layer 260
RLC Layer 264
PDCP Layer 264
SDAP Layer 267
3.2.1.4.2 MR DC Protocol Architecture 269
3.2.2 Fundamental Procedures for NR Standalone 272
3.2.2.1 UE State Transition 272
3.2.2.2 System Information Acquisition 273
3.2.2.3 Paging and DRX 274
3.2.2.4 Access Control 276
3.2.2.5 Random Access Procedure 276
3.2.2.6 RRC Procedures Supporting RRC_INACTIVE State 279
3.2.3 Mobility Control 280
3.2.3.1 Cell selection 280
3.2.3.2 Cell Reselection 280
3.2.3.3 Measurements in RRC_CONNECTED 281
3.2.3.4 Inter-system/Inter-RAT Mobility in Connected Mode 282
3.2.3.4.1 Beam Level Mobility 282
3.2.3.4.2 Handover 282
3.2.4 Vertical Support 284
3.2.4.1 Slicing 284
3.2.4.2 URLLC 285
3.2.4.2.1 Packet Duplication 285
3.2.4.2.2 Transmission/Reception Without Dynamic Grant 286
3.3 Summary 287
References 288
Chapter 4: 5G System Architecture 289
4.1 5G System Architecture 289
4.2 5G Core (5GC) Service-Based Architecture 291
4.2.1 Example of NF Service Registration 293
4.2.2 Example of NF Service Discovery 293
4.3 Network Slicing 294
4.4 Registration, Connection, and Session Management 297
4.4.1 Registration Management 297
4.4.2 Connection Management 297
4.4.3 Registration Call Flow 298
4.4.4 PDU Session Establishment Call Flow 299
4.4.5 Service Request 301
4.4.6 Other Procedures 302
4.5 Session and Service Continuity in 5GC 302
4.6 Interworking with EPC 305
4.7 CP and UP Protocols in 5G Core 306
4.7.1 CP Protocol Stack 306
4.7.2 User Plane Protocol Stack 307
4.8 Support for Virtualized Deployments 308
4.9 Support for Edge Computing 309
4.10 Policy and Charging Control in 5G System 310
4.11 Summary 313
References 314
Chapter 5: 5G Capability Outlook: ITU-R Submission and Performance Evaluation 315
5.1 Overview of 5G Requirements 315
5.2 Overview of Evaluation Methodologies 317
5.2.1 System-Level Simulation for eMBB Technical Performance Requirements 317
5.2.2 Full System-Level Simulation and System plus Link-Level Simulation for Connection Density Evaluation 319
5.2.2.1 Overview of Full System-Level Simulation 319
5.2.2.2 Overview of System-Level plus Link-Level Simulation 320
5.2.3 System-Level plus Link-Level Simulation for Mobility and Reliability 320
5.2.4 Analysis Method 320
5.2.5 Inspection Method 321
5.3 Detailed Definition of Evaluation Metrics and Evaluation Method 321
5.3.1 Evaluation Metrics for eMBB Requirements 321
5.3.1.1 Peak Spectral Efficiency 321
5.3.1.2 Peak Data Rate 323
5.3.1.3 Fifth Percentile User Spectral Efficiency and Average Spectral Efficiency 323
5.3.1.4 User Experienced Data Rate 324
5.3.1.5 Area Traffic Capacity 325
5.3.1.6 User Plane Latency 325
5.3.1.7 Control Plane Latency 330
5.3.1.8 Energy Efficiency 332
5.3.1.9 Mobility 333
5.3.1.10 Mobility Interruption Time 334
5.3.2 Evaluation Metrics for mMTC Requirements 334
5.3.2.1 Connection Density 334
5.3.3 Evaluation Metrics for URLLC Requirements 335
5.3.3.1 User Plane Latency 335
5.3.3.2 Control Plane Latency 335
5.3.3.3 Reliability 336
5.3.3.4 Mobility Interruption Time 336
5.4 5G Performance Evaluation 336
5.4.1 5G Wideband Frame Structure and Physical Channel Structure 337
5.4.1.1 Contribution to Overhead Reduction and Spectral Efficiency/Data Rate Improvement 337
5.4.1.2 Contribution to Latency 343
5.4.1.3 Contribution to Reliability 356
5.4.2 NR MIMO, Multiple Access, and Waveform 358
5.4.2.1 Contribution to Spectral Efficiency Improvement 358
5.4.2.1.1 Downlink Evaluation 358
5.4.2.1.2 Uplink Evaluation 362
5.4.2.2 Contribution to Area Traffic Capacity 364
5.4.3 LTE/NR Coexistence (DL/UL Decoupling) 364
5.4.3.1 Contribution to DL User Experienced Data Rate 367
5.4.3.2 Contribution to UL User Experienced Data Rate 372
5.4.3.3 Contribution to Uplink User Plane Latency 375
5.4.4 NB-IoT 375
5.4.5 Field Test of LTE/NR Spectrum Sharing 378
5.4.5.1 Indoor Test in NSA Deployment 378
5.4.5.2 Indoor Test in SA Deployment 379
5.4.5.3 Outdoor Test 381
5.5 Summary 384
References 385
Chapter 6: 5G Market and Industry 386
6.1 5G Market 386
6.1.1 5G for Enhanced Mobile Broadband Service 387
6.1.2 5G for Vertical Applications 387
6.2 Global Unified 5G Standard and Ecosystem 389
6.2.1 3GPP 390
6.2.2 Other Fora 395
6.2.2.1 5G ACIA for 5G Development in Manufacturing and Processing Industry 395
6.2.2.2 5GAA for 5G Development for Connected Automotive 398
6.2.2.3 Other Verticals 400
6.3 Early Deployments 400
6.3.1 5G Trial in IMT-2020 (5G) Promotion Group 400
6.3.2 5G Deployment Plan 402
6.4 Looking Forward 406
References 407

Erscheint lt. Verlag 9.9.2019
Zusatzinfo XXIII, 393 p. 206 illus., 175 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte 5G • 5G Core • edge computing • EPC • internet of things • LTE • LTE/NR Co-existence • MIMO • mMTC • mmWave • network slicing • New Radio • Nr • polar codes • Radio access technology • Software Defined Network • URLLC • virtualization • wireless communication
ISBN-10 3-030-22236-5 / 3030222365
ISBN-13 978-3-030-22236-9 / 9783030222369
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
69,99