Hecke’s L-functions - Kenkichi Iwasawa

Hecke’s L-functions (eBook)

Spring, 1964
eBook Download: PDF
2019 | 1st ed. 2019
XI, 93 Seiten
Springer Singapore (Verlag)
978-981-13-9495-9 (ISBN)
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate's thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa's work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields.

This volume contains the notes originally made by Kenkichi Iwasawa in his own handwriting for his lecture course at Princeton University in 1964. These notes give a beautiful and completely detailed account of the adelic approach to Hecke's L-functions attached to any number field, including the proof of analytic continuation, the functional equation of these L-functions, and the class number formula arising from the Dedekind zeta function for a general number field. This adelic approach was discovered independently by Iwasawa and Tate around 1950 and marked the beginning of the whole modern adelic approach to automorphic forms and L-series. While Tate's thesis at Princeton in 1950 was finally published in 1967 in the volume Algebraic Number Theory, edited by Cassels and Frohlich, no detailed account of Iwasawa's work has been published until now, and this volume is intended to fill the gap in the literature of one of the key areas of modern number theory. In the final chapter, Iwasawa elegantly explains some important classical results, such as the distribution of prime ideals and the class number formulae for cyclotomic fields.
Erscheint lt. Verlag 3.9.2019
Reihe/Serie SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
Vorwort John Coates, Masato Kurihara
Zusatzinfo XI, 93 p. 17 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte adelic approach to L-functions • analytic continuation of L-functions • class number formula for a general number field • functional equations of L-functions • Kenkichi Iwasawa's lecture notes
ISBN-10 981-13-9495-4 / 9811394954
ISBN-13 978-981-13-9495-9 / 9789811394959
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich