Für diesen Artikel ist leider kein Bild verfügbar.

The Art of Feature Engineering

Essentials for Machine Learning

(Autor)

Buch | Softcover
284 Seiten
2020
Cambridge University Press (Verlag)
978-1-108-70938-5 (ISBN)
52,35 inkl. MwSt
This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.
When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.

Pablo Duboue is Director of Textualization Software Ltd. and is passionate about improving society through technology. He has a Ph.D. in Computer Science from Columbia University and was part of the IBM Watson team that beat the Jeopardy! Champions in 2011. He splits his time between teaching machine learning, doing open research, contributing to free software projects, and consulting for start-ups. He has taught in three different countries and done joint research with more than fifty co-authors. Recent career highlights include a best paper award in the Canadian AI conference industrial track and consulting for a start-up acquired by Intel Corp.

Part I. Fundamentals: 1. Introduction; 2. Features, combined; 3. Features, expanded; 4. Features, reduced; 5. Advanced topics; Part II. Case Studies: 6. Graph data; 7. Timestamped data; 8. Textual data; 9. Image data; 10. Other domains.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 228 mm
Gewicht 420 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-108-70938-9 / 1108709389
ISBN-13 978-1-108-70938-5 / 9781108709385
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90