R Data Science Quick Reference - Thomas Mailund

R Data Science Quick Reference (eBook)

A Pocket Guide to APIs, Libraries, and Packages

(Autor)

eBook Download: PDF
2019 | 1st ed.
IX, 246 Seiten
Apress (Verlag)
978-1-4842-4894-2 (ISBN)
Systemvoraussetzungen
46,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In this handy, practical book you will cover each concept concisely, with many illustrative examples. You'll be introduced to several R data science packages, with examples of how to use each of them. 

In this book, you'll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more.

After using this handy quick reference guide, you'll have the code, APIs, and insights to write data science-based applications in the R programming language.  You'll also be able to carry out data analysis.  


What You Will Learn
  • Import data with readr
  • Work with categories using forcats, time and dates with lubridate, and strings with stringr
  • Format data using tidyr and then transform that data using magrittr and dplyr
  • Write functions with R for data science, data mining, and analytics-based applications
  • Visualize data with ggplot2 and fit data to models using modelr

Who This Book Is For

Programmers new to R's data science, data mining, and analytics packages.  Some prior coding experience with R in general is recommended.  


Thomas Mailund is an associate professor at Aarhus University, Denmark. He has a background in math and computer science.  For the last decade, his main focus has been on genetics and evolutionary studies, particularly comparative genomics, speciation, and gene flow between emerging species.  He has published Beginning Data Science in R, Functional Programming in R, and Metaprogramming in R with Apress as well as other books.  

In this handy, practical book you will cover each concept concisely, with many illustrative examples. You'll be introduced to several R data science packages, with examples of how to use each of them. In this book, you'll learn about the following APIs and packages that deal specifically with data science applications: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more.After using this handy quick reference guide, you'll have the code, APIs, and insights to write data science-based applications in the R programming language.  You'll also be able to carry out data analysis.  What You Will LearnImport data with readrWork with categories using forcats, time and dates with lubridate, and strings with stringrFormat data using tidyr and then transform that data using magrittr and dplyrWrite functions with R for data science, data mining, and analytics-based applicationsVisualize data with ggplot2 and fit data to models using modelrWho This Book Is ForProgrammers new to R's data science, data mining, and analytics packages.  Some prior coding experience with R in general is recommended.  

Table of Contents 4
About the Author 8
About the Technical Reviewer 9
Chapter 1: Introduction 10
Chapter 2: Importing Data: readr 13
Functions for Reading Data 14
File Headers 16
Column Types 19
String-based Column Type Specification 20
Function-based Column Type Specification 26
Parsing Time and Dates 30
Space-separated Columns 36
Functions for Writing Data 39
Chapter 3: Representing Tables: tibble 40
Creating Tibbles 40
Indexing Tibbles 45
Chapter 4: Reformatting Tables: tidyr 51
Tidy Data 51
Gather and Spread 52
Complex Column Encodings 57
Expanding, Crossing, and Completing 63
Missing Values 67
Nesting Data 72
Chapter 5: Pipelines: magrittr 76
The Problem with Pipelines 76
Pipeline Notation 79
Pipelines and Function Arguments 80
Function Composition 83
Other Pipe Operations 84
Chapter 6: Functional Programming: purrr 87
General Features of purrr Functions 88
Filtering 88
Mapping 90
Reduce and Accumulate 101
Partial Evaluation and Function Composition 105
Lambda Expressions 108
Chapter 7: Manipulating Data Frames: dplyr 112
Selecting Columns 112
Filter 120
Sorting 128
Modifying Data Frames 130
Grouping and Summarizing 136
Joining Tables 149
Income in Fictional Countries 158
Chapter 8: Working with Strings: stringr 164
Counting String Patterns 164
Splitting Strings 167
Capitalizing Strings 169
Wrapping, Padding, and Trimming 169
Detecting Substrings 174
Extracting Substrings 177
Transforming Strings 177
Chapter 9: Working with Factors: forcats 184
Creating Factors 184
Concatenation 186
Projection 189
Adding Levels 193
Reorder Levels 194
Chapter 10: Working with Dates: lubridate 197
Time Points 197
Time Zones 199
Time Intervals 201
Chapter 11: Working with Models: broom and modelr 206
broom 206
modelr 209
Chapter 12: Plotting: ggplot2 220
The Basic Plotting Components in ggplot2 220
Adding Components to Plot Objects 222
Adding Data 224
Adding Aesthetics 224
Adding Geometries 225
Facets 233
Adding Coordinates 237
Chapter 13: Conclusions 240
Index 241

Erscheint lt. Verlag 7.8.2019
Zusatzinfo IX, 246 p. 11 illus.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Schlagworte Analytics • Broom • Data Science • dplyr • forcats • ggplot • knitr • lubridate • magrittr • markdown • modelr • purrr • R • readr • RMarkdown • Shiny • stingr • tibble • tidyr
ISBN-10 1-4842-4894-5 / 1484248945
ISBN-13 978-1-4842-4894-2 / 9781484248942
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99