Towards Energy-Efficient Convolutional Neural Network Inference

Buch
XVIII, 238 Seiten
2019 | 2019
Hartung-Gorre (Verlag)
978-3-86628-651-1 (ISBN)

Lese- und Medienproben

Towards Energy-Efficient Convolutional Neural Network Inference - Lukas Arno Jakob Cavigelli
64,00 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Deep learning and particularly convolutional neural networks (CNNs) have become the method of choice for most computer vision tasks. The achieved leap in accuracy has dramatically increased the range of possibilities and created a demand for running these compute and memory intensive algorithms on embedded and mobile devices. In this thesis, we evaluate the capabilities of software-programmable hardware, dive into specialized accelerators, and explore the potential of extremely quantized CNNs—all with special consideration to external memory bandwidth, which dominates the overall energy cost. We establish that—including I/O—software-programmable platforms can achieve 10–40 GOp/s/W, our specialized accelerator for fixedpoint CNNs achieves 630 GOp/s/W, binary-weight CNNs can be implemented with up to 5.9 TOp/s/W and very small binarized neural networks implementable with purely combinational logic could be run directly on the sensor with 670 TOp/s/W.
Erscheinungsdatum
Reihe/Serie Series in Microelectronics ; 238
Verlagsort Konstanz
Sprache englisch
Maße 148 x 210 mm
Gewicht 360 g
Themenwelt Mathematik / Informatik Informatik Weitere Themen
Naturwissenschaften Physik / Astronomie Elektrodynamik
Schlagworte Convolutional Neural Networks (CNN) • energy-efficiency • inference
ISBN-10 3-86628-651-1 / 3866286511
ISBN-13 978-3-86628-651-1 / 9783866286511
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eigene Designs erstellen, schneiden und gravieren

von Teja Philipp; Anika Kehrer; Sven Rens

Buch (2023)
Hanser, Carl (Verlag)
39,99
richtig diktieren mit der Spracherkennung

von Stephan Küpper

Buch | Softcover (2023)
BILDNER Verlag
29,90