Data Mining for Systems Biology -

Data Mining for Systems Biology

Methods and Protocols

Hiroshi Mamitsuka (Herausgeber)

Buch | Softcover
243 Seiten
2019 | Softcover reprint of the original 2nd ed. 2018
Humana Press Inc. (Verlag)
978-1-4939-9326-0 (ISBN)
128,39 inkl. MwSt
This fully updated book collects numerous data mining techniques, reflecting the acceleration and diversity of the development of data-driven approaches to the life sciences. The first half of the volume examines genomics, particularly metagenomics and epigenomics, which promise to deepen our knowledge of genes and genomes, while the second half of the book emphasizes metabolism and the metabolome as well as relevant medicine-oriented subjects. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that is useful for getting optimal results. 
Authoritative and practical, Data Mining for Systems Biology: Methods and Protocols, Second Edition serves as an ideal resource for researchers of biology and relevant fields, such as medical, pharmaceutical, and agricultural sciences, as well as for the scientists and engineers who are working on developing data-driven techniques, such as databases, data sciences, data mining, visualization systems, and machine learning or artificial intelligence that now are central to the paradigm-altering discoveries being made with a higher frequency.

Identifying Bacterial Strains from Sequencing Data.- MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification.- Online Interactive Microbial Classification and Geospatial Distributional Analysis Using BioAtlas.- Generative Models for Quantification of DNA Modifications.- DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data.- Implementing a Transcription Factor Interaction Prediction System Using the GenoMetric Query Language.- Multiple Testing Tool to Detect Combinatorial Effects in Biology.- SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining.- Computing and Visualizing Gene Function Similarity and Coherence with NaviGO.- Analyzing Glycan Binding Profiles Using Weighted Multiple Alignment of Trees.- Analysis of Fluxomic Experiments with Principal Metabolic Flux Mode Analysis.- Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training, Searching, and Post-Processing.- Sparse Modeling to Analyze Drug-Target Interaction Networks.- DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank.- MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing.- Disease Gene Classification with Metagraph Representations.- Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG.

Erscheinungsdatum
Reihe/Serie Methods in Molecular Biology ; 1807
Zusatzinfo 86 Illustrations, color; 9 Illustrations, black and white; XI, 243 p. 95 illus., 86 illus. in color.
Verlagsort Totowa, NJ
Sprache englisch
Maße 178 x 254 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Artificial Intelligence • data sciences • Epigenomics • machine learning • Metabolomics • Metagenomics • Pharmaceutical science
ISBN-10 1-4939-9326-7 / 1493993267
ISBN-13 978-1-4939-9326-0 / 9781493993260
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95