Differential Geometric Methods in Mathematical Physics -

Differential Geometric Methods in Mathematical Physics

S. Sternberg (Herausgeber)

Buch | Softcover
296 Seiten
2001 | Softcover reprint of the original 1st ed. 1984
Springer-Verlag New York Inc.
978-1-4020-0341-7 (ISBN)
160,49 inkl. MwSt
The following pages represent the Proceedings of the XI Annual Conference on Differential Geometric Methods in Mathematical Physics which was held in Jerusalem from August 5 through 11, 1982 under the auspices of the Tel Aviv University and the Israel Academy of Sciences and Humanities. In addition to the above mentioned institutions, partial financial support was received form the Bank Leumi Lelsrael Fund for International Conferences, the American Friends of the Tel Aviv Institute of Mathematical Sciences and the Mathematics and Physics Branch of the United States Army Research, Development and Standardization Group (UK). We are grateful to all of these organizations for their financial support. GAUGE THEORY AND NUCLEAR STRUCTURE K. Bleuler Institut fur Theoretische Kernphysik der Universitat Bonn NuBallee 14-16, D-5300 Bonn, West-Germany I. INTRODUCTION The recent, most impressive verification of the Salam- -Weinberg theory of electro-weak interactions through the experimental discovery of the so-called inter- mediate bosons represents, at the same time, a success of the general gauge theoretical viewpoints in modern particle physics (quantum chromodynamics, 0CD).
This theory leads to a deeper and by far more natural inter- pretation of particle interaction and induces, as we shall see, also a profound change in our understanding of nuclear structure.

Gauge Theory and Nuclear Structure.- Théories des Jauges Graduées.- The Continuity of Computing Connections from Curvatures, and of Dividing Smooth Functions.- Gauge Theories on Homogeneous Manifolds.- Gauge Independent Symmetries & Wavefunctions for Systems of Identical Particles.- Superspaces and Supermanifolds.- A Lagrangian for SU(2/1) Quantum Asthenodynamics.- Casimir Elements of Lie Superalgebras.- Normal Form for Hamiltonian Vectorfields with Periodic Flow.- Magnetic Solution of Yang-Mills Equations and the Motion of Classical Particle.- A Normal Form for the Moment Map.- Plasma Kinetic Theory and Differential Geometry.- Noether’s Theorem for Harmonic Maps.- Wave Functions and Transverse Measures.- On Quantization of Systems with Constraints.- Geometric Quantization in the Spirit of Gupta and Bleuler.- On Deformation of Differentials of Immersions.- Lie Algebras of Symmetries of Partial Differential Equations.- A Lie Algebraic Approach to Order Parameters.

Erscheint lt. Verlag 30.11.2001
Reihe/Serie Mathematical Physics Studies ; 6
Zusatzinfo VIII, 296 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
ISBN-10 1-4020-0341-2 / 1402003412
ISBN-13 978-1-4020-0341-7 / 9781402003417
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95