Brauer Groups, Hopf Algebras and Galois Theory
Springer-Verlag New York Inc.
978-1-4020-0346-2 (ISBN)
The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph.
Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use.
I The Brauer group of a commutative ring.- 1 Morita theory for algebras without a unit.- 2 Azumaya algebras and Taylor-Azumaya algebras.- 3 The Brauer group.- 4 Central separable algebras.- 5 Amitsur cohomology and étale cohomology.- 6 Cohomological interpretation of the Brauer group.- II Hopf algebras and Galois theory.- 7 Hopf algebras.- 8 Galois objects.- 9 Cohomology over Hopf algebras.- 10 The group of Galois (co)objects.- 11 Some examples.- III The Brauer-Long group of a commutative ring.- 12 H-Azumaya algebras.- 13 The Brauer-Long group of a commutative ring.- 14 The Brauer group of Yetter-Drinfel’d module algebras.- A Abelian categories and homological algebra.- A.1 Abelian categories.- A.2 Derived functors.- B Faithfully flat descent.- C Elementary algebraic K-theory.
Erscheint lt. Verlag | 31.3.2002 |
---|---|
Reihe/Serie | K-Monographs in Mathematics ; 4 |
Zusatzinfo | XVI, 488 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4020-0346-3 / 1402003463 |
ISBN-13 | 978-1-4020-0346-2 / 9781402003462 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich