Homology of Locally Semialgebraic Spaces - Hans Delfs

Homology of Locally Semialgebraic Spaces

(Autor)

Buch | Softcover
X, 138 Seiten
1991 | 1991
Springer Berlin (Verlag)
978-3-540-54615-3 (ISBN)
26,74 inkl. MwSt
Locally semialgebraic spaces serve as an appropriateframework for studying the topological properties ofvarieties and semialgebraic sets over a real closed field.This book contributes to the fundamental theory ofsemialgebraic topology and falls into two main parts.The first dealswith sheaves and their cohomology on spaceswhich locally look like a constructible subset of a realspectrum. Topics like families of support, homotopy, acyclicsheaves, base-change theorems and cohomological dimensionare considered.In the second part a homology theory for locally completelocally semialgebraic spaces over a real closed field isdeveloped, the semialgebraic analogue of classicalBore-Moore-homology. Topics include fundamental classes ofmanifolds and varieties, Poincare duality, extensions of thebase field and a comparison with the classical theory.Applying semialgebraic Borel-Moore-homology, a semialgebraic("topological") approach to intersection theory on varietiesover an algebraically closed field of characteristic zero isgiven. The book is addressed to researchers and advancedstudents in real algebraic geometry and related areas.

Abstract locally semialgebraic spaces.- Sheaf theory on locally semialgebraic spaces.- Semialgebraic Borel-Moore-homology.- Some intersection theory.

Erscheint lt. Verlag 23.10.1991
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo X, 138 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 234 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Schlagworte algebraic topology • cohomology • Homology • Homotopy • real varieties • semialgebraic topology • sheaf theory
ISBN-10 3-540-54615-4 / 3540546154
ISBN-13 978-3-540-54615-3 / 9783540546153
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich