Für diesen Artikel ist leider kein Bild verfügbar.

Nearest Neighbor Methods for the Imputation of Missing Values in Low and High-Dimensional Data (eBook)

eBook Download: PDF
2018 | 1. Auflage
218 Seiten
Cuvillier Verlag
978-3-7369-8741-8 (ISBN)
Systemvoraussetzungen
39,10 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Nowadays, due to the advancement and significantly rapid growth in the technology, the collection of high-dimensional data is no longer a tedious task. Regardless of considerable advances in technology over the last few decades, the analysis of high-dimensional data faces new challenges concerning interpretation and integration. One of the major problems in high-dimensional data is the occurrence of missing values. The problem is in particular hard to handle when the distributional forms of the variables are different or the variables are measured on different measurement scales (e.g. binary, multi-categorical, continuous, etc.). Whatever the reason, missing data may occur in all areas of applied research. The inadequate handling of missing values may lead to biased results and incorrect inference. The standard statistical techniques for analyzing the data require complete cases without any missing observations. The deletion of the cases with missing information to obtain complete data will not only cause the loss of important information but can also affect inferences. In this dissertation, different imputation techniques using nearest neighbors are developed to address the missing data issues in high-dimensional as well as low dimensional data structures.
Erscheint lt. Verlag 27.2.2018
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
ISBN-10 3-7369-8741-2 / 3736987412
ISBN-13 978-3-7369-8741-8 / 9783736987418
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich